Survey of emerging technology based physical unclonable funtions

Ilia A. Bautista Adames, J. Das, S. Bhanja
{"title":"Survey of emerging technology based physical unclonable funtions","authors":"Ilia A. Bautista Adames, J. Das, S. Bhanja","doi":"10.1145/2902961.2903044","DOIUrl":null,"url":null,"abstract":"Authentication of electronic devices has become critical. Hardware authentication is one way to enhance security of a chip. Along with software, it makes it harder for an intruder to access any computer, smart-phone, or other devices without authorization. One way of authenticating a device through hardware is to use the fabrication anomalies, which are random and unclonable. This mechanism is called a Physical Unclonable Function (PUF). PUFs are easy to evaluate but hard to predict. PUF is a concept that gained popularity since the past decade, when researchers started taking advantage of the randomness of electrical signals in order to build a unique authentication block. This survey will show the state-of-the-art devices that are currently investigated as PUFs. The different technologies are compared by taking into account reproducibility, uniqueness, randomness, area, scalability, and compatibility with CMOS. Emphasis is put on technologies that are emerging and gaining commercial interest. Through comparisons, we will show their applicability to different environments.","PeriodicalId":407054,"journal":{"name":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902961.2903044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Authentication of electronic devices has become critical. Hardware authentication is one way to enhance security of a chip. Along with software, it makes it harder for an intruder to access any computer, smart-phone, or other devices without authorization. One way of authenticating a device through hardware is to use the fabrication anomalies, which are random and unclonable. This mechanism is called a Physical Unclonable Function (PUF). PUFs are easy to evaluate but hard to predict. PUF is a concept that gained popularity since the past decade, when researchers started taking advantage of the randomness of electrical signals in order to build a unique authentication block. This survey will show the state-of-the-art devices that are currently investigated as PUFs. The different technologies are compared by taking into account reproducibility, uniqueness, randomness, area, scalability, and compatibility with CMOS. Emphasis is put on technologies that are emerging and gaining commercial interest. Through comparisons, we will show their applicability to different environments.
基于物理不可克隆功能的新兴技术综述
电子设备的认证变得至关重要。硬件认证是提高芯片安全性的一种方法。与软件一起,它使入侵者在未经授权的情况下更难访问任何计算机、智能手机或其他设备。通过硬件验证设备的一种方法是使用制造异常,这是随机的和不可克隆的。这种机制被称为物理不可克隆功能(PUF)。puf很容易评估,但很难预测。PUF是一个从过去十年开始流行起来的概念,当时研究人员开始利用电信号的随机性来建立一个独特的身份验证块。这项调查将展示目前作为puf研究的最先进的设备。通过考虑再现性、唯一性、随机性、面积、可扩展性和与CMOS的兼容性,对不同的技术进行了比较。重点放在新兴和获得商业利益的技术上。通过比较,我们将展示它们对不同环境的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信