IN-VEHICLE CAMERA IMAGES PREDICTION BY GENERATIVE ADVERSARIAL NETWORK

J. Watanabe, T. Gonsalves
{"title":"IN-VEHICLE CAMERA IMAGES PREDICTION BY GENERATIVE ADVERSARIAL NETWORK","authors":"J. Watanabe, T. Gonsalves","doi":"10.5121/CSIT.2019.90205","DOIUrl":null,"url":null,"abstract":"Moving object detection is one of the fundamental technologies necessary to realize autonomous driving. In this study, we propose the prediction of an in-vehicle camera image by Generative Adversarial Network (GAN). From the past images input to the system, it predicts the future images at the output. By predicting the motion of a moving object, it can predict the destination of the moving object. The proposed model can predict the motion of moving objects such as cars, bicycles, and pedestrians.","PeriodicalId":251548,"journal":{"name":"Computer Science & Information Technology(CS & IT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Information Technology(CS & IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moving object detection is one of the fundamental technologies necessary to realize autonomous driving. In this study, we propose the prediction of an in-vehicle camera image by Generative Adversarial Network (GAN). From the past images input to the system, it predicts the future images at the output. By predicting the motion of a moving object, it can predict the destination of the moving object. The proposed model can predict the motion of moving objects such as cars, bicycles, and pedestrians.
基于生成对抗网络的车载摄像头图像预测
运动目标检测是实现自动驾驶的基础技术之一。在这项研究中,我们提出了一种基于生成对抗网络(GAN)的车载摄像头图像预测方法。从过去的图像输入到系统,它预测未来的图像输出。通过预测运动物体的运动,它可以预测运动物体的目的地。该模型可以预测汽车、自行车和行人等运动物体的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信