A New Method Of Central Difference Interpolation

J. Uddin, Md. Kowsher, Mir Md. Moheuddin
{"title":"A New Method Of Central Difference Interpolation","authors":"J. Uddin, Md. Kowsher, Mir Md. Moheuddin","doi":"10.5121/mathsj.2019.6301","DOIUrl":null,"url":null,"abstract":"In Numerical analysis, interpolation is a manner of calculating the unknown values of a function for any conferred value of argument within the limit of the arguments. It provides basically a concept of estimating unknown data with the aid of relating acquainted data. The main goal of this research is to constitute a central difference interpolation method which is derived from the combination of Gauss’s third formula, Gauss’s Backward formula and Gauss’s forward formula. We have also demonstrated the graphical presentations as well as comparison through all the existing interpolation formulas with our propound method of central difference interpolation. By the comparison and graphical presentation, the new method gives the best result with the lowest error from another existing interpolation formula.","PeriodicalId":276601,"journal":{"name":"Applied Mathematics and Sciences An International Journal (MathSJ)","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Sciences An International Journal (MathSJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mathsj.2019.6301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In Numerical analysis, interpolation is a manner of calculating the unknown values of a function for any conferred value of argument within the limit of the arguments. It provides basically a concept of estimating unknown data with the aid of relating acquainted data. The main goal of this research is to constitute a central difference interpolation method which is derived from the combination of Gauss’s third formula, Gauss’s Backward formula and Gauss’s forward formula. We have also demonstrated the graphical presentations as well as comparison through all the existing interpolation formulas with our propound method of central difference interpolation. By the comparison and graphical presentation, the new method gives the best result with the lowest error from another existing interpolation formula.
一种新的中心差分插值方法
在数值分析中,内插是一种在参数限制内计算函数的未知值的方法。它基本上提供了一种通过关联已知数据来估计未知数据的概念。本研究的主要目的是构建一种结合高斯第三公式、高斯后向公式和高斯正向公式的中心差分插值方法。用我们提出的中心差分插值方法对现有的插值公式进行了图解和比较。通过对比和图解说明,新方法与另一种已有的插值公式相比,误差最小,结果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信