QarSUMO: A Parallel, Congestion-optimized Traffic Simulator

Hao Chen, Ke Yang, S. Rizzo, Giovanna Vantini, Phillip Taylor, Xiaosong Ma, S. Chawla
{"title":"QarSUMO: A Parallel, Congestion-optimized Traffic Simulator","authors":"Hao Chen, Ke Yang, S. Rizzo, Giovanna Vantini, Phillip Taylor, Xiaosong Ma, S. Chawla","doi":"10.1145/3397536.3422274","DOIUrl":null,"url":null,"abstract":"Traffic simulators are important tools for tasks such as urban planning and transportation management. Microscopic simulators allow per-vehicle movement simulation, but require longer simulation time. The simulation overhead is exacerbated when there is traffic congestion and most vehicles move slowly. This in particular hurts the productivity of emerging urban computing studies based on reinforcement learning, where traffic simulations are heavily and repeatedly used for designing policies to optimize traffic related tasks. In this paper, we develop QarSUMO, a parallel, congestion-optimized version of the popular SUMO open-source traffic simulator. QarSUMO performs high-level parallelization on top of SUMO, to utilize powerful multi-core servers and enables future extension to multi-node parallel simulation if necessary. The proposed design, while partly sacrificing speedup, makes QarSUMO compatible with future SUMO improvements. We further contribute such an improvement by modifying the SUMO simulation engine for congestion scenarios where the update computation of consecutive and slow-moving vehicles can be simplified. We evaluate QarSUMO with both real-world and synthetic road network and traffic data, and examine its execution time as well as simulation accuracy relative to the original, sequential SUMO.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Traffic simulators are important tools for tasks such as urban planning and transportation management. Microscopic simulators allow per-vehicle movement simulation, but require longer simulation time. The simulation overhead is exacerbated when there is traffic congestion and most vehicles move slowly. This in particular hurts the productivity of emerging urban computing studies based on reinforcement learning, where traffic simulations are heavily and repeatedly used for designing policies to optimize traffic related tasks. In this paper, we develop QarSUMO, a parallel, congestion-optimized version of the popular SUMO open-source traffic simulator. QarSUMO performs high-level parallelization on top of SUMO, to utilize powerful multi-core servers and enables future extension to multi-node parallel simulation if necessary. The proposed design, while partly sacrificing speedup, makes QarSUMO compatible with future SUMO improvements. We further contribute such an improvement by modifying the SUMO simulation engine for congestion scenarios where the update computation of consecutive and slow-moving vehicles can be simplified. We evaluate QarSUMO with both real-world and synthetic road network and traffic data, and examine its execution time as well as simulation accuracy relative to the original, sequential SUMO.
QarSUMO:一个并行的,拥堵优化的交通模拟器
交通模拟器是城市规划和交通管理等任务的重要工具。微观模拟器允许模拟每辆车的运动,但需要更长的模拟时间。当交通拥挤且大多数车辆移动缓慢时,仿真开销会加剧。这尤其损害了基于强化学习的新兴城市计算研究的生产力,在这些研究中,交通模拟被大量重复地用于设计优化交通相关任务的策略。在本文中,我们开发了QarSUMO,这是一个流行的SUMO开源交通模拟器的并行,拥堵优化版本。QarSUMO在SUMO之上执行高级并行化,以利用强大的多核服务器,并在必要时支持未来扩展到多节点并行模拟。拟议的设计,虽然在一定程度上牺牲了加速,使QarSUMO兼容未来的SUMO改进。我们通过修改拥堵场景的SUMO模拟引擎进一步改进了这种改进,从而简化了连续和缓慢移动车辆的更新计算。我们使用真实世界和合成道路网络和交通数据来评估QarSUMO,并检查其执行时间以及相对于原始顺序SUMO的仿真精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信