{"title":"Higher-order abstract syntax in classical higher-order logic","authors":"Douglas J. Howe","doi":"10.1145/1577824.1577826","DOIUrl":null,"url":null,"abstract":"Higher-Order Abstract Syntax, or HOAS, is a technique for using a higher-order logic as a metalanguage for an object language with binding operators. It avoids formalizing syntactic details related to variable binding. This paper gives an extension to classical higher-order logic that supports HOAS. The logic we work with is the core of the logics employed in the widely used systems HOL and Isabelle/HOL. The extension adds recursive types, and a new type constructor for parametric functions. Using these additions, we can solve, for example, the archetypal recursive type equation for a HOAS representation of the syntax of the untyped lambda-calculus: T = (T x T) + (T ↪ T), where the function type is the new parametric one. The usual HOAS induction principles can be derived. The bulk of the technical development in the paper is a semantics of the new logic, extending the usual set-theoretic semantics of classical higher-order logic.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577824.1577826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Higher-Order Abstract Syntax, or HOAS, is a technique for using a higher-order logic as a metalanguage for an object language with binding operators. It avoids formalizing syntactic details related to variable binding. This paper gives an extension to classical higher-order logic that supports HOAS. The logic we work with is the core of the logics employed in the widely used systems HOL and Isabelle/HOL. The extension adds recursive types, and a new type constructor for parametric functions. Using these additions, we can solve, for example, the archetypal recursive type equation for a HOAS representation of the syntax of the untyped lambda-calculus: T = (T x T) + (T ↪ T), where the function type is the new parametric one. The usual HOAS induction principles can be derived. The bulk of the technical development in the paper is a semantics of the new logic, extending the usual set-theoretic semantics of classical higher-order logic.