ANALISIS CLUSTERING TEKS TANGGAPAN MASYARAKAT DI TWITTER TERHADAP PEMBATASAN SOSIAL BERSKALA BESAR MENGGUNAKAN ALGORITMA K-MEANS

M. Akbar, Darmatasia Darmatasia, Mustikasari Mustikasari, Muhammad Syahwal
{"title":"ANALISIS CLUSTERING TEKS TANGGAPAN MASYARAKAT DI TWITTER TERHADAP PEMBATASAN SOSIAL BERSKALA BESAR MENGGUNAKAN ALGORITMA K-MEANS","authors":"M. Akbar, Darmatasia Darmatasia, Mustikasari Mustikasari, Muhammad Syahwal","doi":"10.24252/insypro.v6i1.23325","DOIUrl":null,"url":null,"abstract":"Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19.  Namun kebijakan tersebut menuai tanggapan  pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya.   ","PeriodicalId":199754,"journal":{"name":"Jurnal INSYPRO (Information System and Processing)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal INSYPRO (Information System and Processing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24252/insypro.v6i1.23325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19.  Namun kebijakan tersebut menuai tanggapan  pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya.   
使用k -均值算法对TWITTER上人们的大规模社会限制的集群文本分析
日冕病毒(COVID-19)之所以被世界卫生组织(World Health Organization)列为世界卫生组织(World Health Organization)的流行病,是因为它的传播稳步增加,已经蔓延到世界上大多数国家,包括印度尼西亚。每个国家都需要更加积极地采取预防措施和治疗措施。印尼政府自己发布了要求戴口罩、宵禁和PSBB(大规模社会限制)的政策,以遏制COVID-19的蔓延。然而,这一政策正通过社交媒体获得公众的支持和反对意见,而PSBB一方面被认为能够遏制COVID-19的流行,另一方面则被认为会加剧人民的经济状况,尤其是中产阶级。该研究的目的是将公众对twitter上PSBB的反应分组为多个集群,而在同一集群中的反应则被认为具有类似的主题或讨论特征,否则将为政府评估其政策提供额外的见解。k -手段算法被用来对具有特征相似性的反应进行分组,因为它们被证明具有相对快速执行时间的高准确性。这项研究产生了4个集群,而不是用梯形方法来确定K的计数和用于评估参数的总和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信