A Parallel Local Search Algorithm for Clustering Large Biological Networks

Gaetano Coccimiglio, Salimur Choudhury
{"title":"A Parallel Local Search Algorithm for Clustering Large Biological Networks","authors":"Gaetano Coccimiglio, Salimur Choudhury","doi":"10.1142/S0129626417500074","DOIUrl":null,"url":null,"abstract":"Clustering is an effective technique that can be used to analyze and extract useful information from large biological networks. Popular clustering solutions often require user input for several algorithm options that can seem very arbitrary without experimentation. These algorithms can provide good results in a reasonable time period but they are not above improvements. We present a local search based clustering algorithm free of such required input that can be used to improve the cluster quality of a set of given clusters taken from any existing algorithm or clusters produced via any arbitrary assignment. We implement this local search using a modern GPU based approach to allow for efficient runtime. The proposed algorithm shows promising results for improving the quality of clusters. With already high quality input clusters we can achieve cluster rating improvements upto to 33%.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"701 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626417500074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is an effective technique that can be used to analyze and extract useful information from large biological networks. Popular clustering solutions often require user input for several algorithm options that can seem very arbitrary without experimentation. These algorithms can provide good results in a reasonable time period but they are not above improvements. We present a local search based clustering algorithm free of such required input that can be used to improve the cluster quality of a set of given clusters taken from any existing algorithm or clusters produced via any arbitrary assignment. We implement this local search using a modern GPU based approach to allow for efficient runtime. The proposed algorithm shows promising results for improving the quality of clusters. With already high quality input clusters we can achieve cluster rating improvements upto to 33%.
大型生物网络聚类的并行局部搜索算法
聚类是一种有效的技术,可用于从大型生物网络中分析和提取有用信息。流行的聚类解决方案通常需要用户输入几个算法选项,这些算法选项在没有实验的情况下看起来非常随意。这些算法可以在合理的时间内提供良好的结果,但它们并没有得到改进。我们提出了一种基于局部搜索的聚类算法,该算法不需要这些必要的输入,可用于提高从任何现有算法中提取的一组给定聚类的聚类质量或通过任意分配产生的聚类。我们使用基于现代GPU的方法来实现这种本地搜索,以实现高效的运行时。该算法在提高聚类质量方面取得了良好的效果。有了高质量的输入集群,我们可以将集群评级提高到33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信