Application and Benefits of Target Programming Algorithms for Ferroelectric HfO2 Transistors

H. Zhou, J. Ocker, A. Padovani, M. Pešić, M. Trentzsch, S. Dünkel, H. Mulaosmanovic, S. Slesazeck, L. Larcher, S. Beyer, S. Müller, T. Mikolajick
{"title":"Application and Benefits of Target Programming Algorithms for Ferroelectric HfO2 Transistors","authors":"H. Zhou, J. Ocker, A. Padovani, M. Pešić, M. Trentzsch, S. Dünkel, H. Mulaosmanovic, S. Slesazeck, L. Larcher, S. Beyer, S. Müller, T. Mikolajick","doi":"10.1109/IEDM13553.2020.9371975","DOIUrl":null,"url":null,"abstract":"The ferroelectric HfO2 based field effect transistor (FeFET) has been under research for many years and shows unique properties for applications in the field of emerging memories and in-memory computing. This work for the first time demonstrates how a target programming algorithm can improve the FeFET device characteristics with respect to endurance performance and variability for small device geometries. With this technique the threshold voltage Vt of the memory cell can be targeted to any desired value, which is essential for multilevel cells and analog in-memory computing as used in AI accelerators. The switching, trapping and detrapping characteristics of the cell and their influence on the target programming algorithm are presented. The trapping and leakage characteristics are modelled using the GinestraTM simulation software to extract the trap distribution in ferroelectric HfO2. Finally, a model for the underlying mechanism of the endurance degradation is proposed.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9371975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The ferroelectric HfO2 based field effect transistor (FeFET) has been under research for many years and shows unique properties for applications in the field of emerging memories and in-memory computing. This work for the first time demonstrates how a target programming algorithm can improve the FeFET device characteristics with respect to endurance performance and variability for small device geometries. With this technique the threshold voltage Vt of the memory cell can be targeted to any desired value, which is essential for multilevel cells and analog in-memory computing as used in AI accelerators. The switching, trapping and detrapping characteristics of the cell and their influence on the target programming algorithm are presented. The trapping and leakage characteristics are modelled using the GinestraTM simulation software to extract the trap distribution in ferroelectric HfO2. Finally, a model for the underlying mechanism of the endurance degradation is proposed.
目标规划算法在铁电HfO2晶体管中的应用与效益
基于HfO2的铁电场效应晶体管(FeFET)经过多年的研究,在新兴存储器和内存计算领域显示出独特的性能。这项工作首次展示了目标规划算法如何改善FeFET器件的耐用性能和小器件几何形状的可变性。使用这种技术,存储单元的阈值电压Vt可以定位到任何期望的值,这对于AI加速器中使用的多级单元和模拟内存计算是必不可少的。给出了单元格的切换、捕获和去捕获特性及其对目标规划算法的影响。利用GinestraTM仿真软件模拟了铁电HfO2的捕获和泄漏特性,提取了铁电HfO2中的捕获分布。最后,提出了耐久性退化的机理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信