Cysteine separations profiles on protein secondary structure infer disulfide connectivity

Guantao Chen, Hai Deng, Yufeng Gui, Yi Pan, Xue Wang
{"title":"Cysteine separations profiles on protein secondary structure infer disulfide connectivity","authors":"Guantao Chen, Hai Deng, Yufeng Gui, Yi Pan, Xue Wang","doi":"10.1109/GRC.2006.1635889","DOIUrl":null,"url":null,"abstract":"Disulfide connectivity prediction from one chain of protein helps determine protein tertiary structure. The more accuracy of prediction it reaches the more precise three dimensional structures we can obtain through computational methods. Previous methods only use local sequence or secondary structure information or global sequence information or combination of the above descriptors to predict the disulfide bond pattern. Instead of using those descriptors, we take an alternative descriptor of global secondary structure to make prediction, and the highest performance among all pattern-wise methods is obtained. Cysteine separation profiles on protein secondary structure have been used to predict the disulfide connectivity of proteins. The cysteine separation profiles on secondary structure(CSPSS) represent a vector encoded from the sepeartions between any two consecutive cysteine-corresponding positions in a predicted protein secondary structure sequence. Through comparisons of their CSPSS, the disulfide connectivity of a test protein is inferred from a template set. In 4-fold of SP39, any two proteins from different groups share less than 30% sequence identity. The result shows a prediction accuracy (54%), which proves again a disulfide bond pattern is highly related to protein secondary structure.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"140 18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Disulfide connectivity prediction from one chain of protein helps determine protein tertiary structure. The more accuracy of prediction it reaches the more precise three dimensional structures we can obtain through computational methods. Previous methods only use local sequence or secondary structure information or global sequence information or combination of the above descriptors to predict the disulfide bond pattern. Instead of using those descriptors, we take an alternative descriptor of global secondary structure to make prediction, and the highest performance among all pattern-wise methods is obtained. Cysteine separation profiles on protein secondary structure have been used to predict the disulfide connectivity of proteins. The cysteine separation profiles on secondary structure(CSPSS) represent a vector encoded from the sepeartions between any two consecutive cysteine-corresponding positions in a predicted protein secondary structure sequence. Through comparisons of their CSPSS, the disulfide connectivity of a test protein is inferred from a template set. In 4-fold of SP39, any two proteins from different groups share less than 30% sequence identity. The result shows a prediction accuracy (54%), which proves again a disulfide bond pattern is highly related to protein secondary structure.
半胱氨酸在蛋白质二级结构上的分离图谱推断出二硫连通性
蛋白质单链的二硫连通性预测有助于确定蛋白质的三级结构。预测的精度越高,通过计算方法得到的三维结构就越精确。以前的方法仅使用局部序列或二级结构信息或全局序列信息或上述描述符的组合来预测二硫键模式。我们采用全局二级结构描述符代替这些描述符进行预测,在所有模式方法中获得了最高的性能。半胱氨酸在蛋白质二级结构上的分离谱已被用来预测蛋白质的二硫连通性。半胱氨酸二级结构分离谱(CSPSS)是由预测的蛋白质二级结构序列中任意两个连续的半胱氨酸对应位置之间的分离编码而成的载体。通过比较它们的CSPSS,测试蛋白的二硫连通性是从模板集推断出来的。在SP39的4倍序列中,来自不同组的任意两个蛋白序列同源性小于30%。结果表明,预测精度为54%,再次证明了二硫键模式与蛋白质二级结构高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信