Feed-forward network for cancer detection

Shengyu Pei, Lang Tong, Xia Li, Jin Jiang, Jingyu Huang
{"title":"Feed-forward network for cancer detection","authors":"Shengyu Pei, Lang Tong, Xia Li, Jin Jiang, Jingyu Huang","doi":"10.1109/FSKD.2017.8393356","DOIUrl":null,"url":null,"abstract":"Samples of patients with or without disease can be diagnosed by serum proteomic pattern. Protein mass spectra are created by applying Surface-Enhanced Laser Desorption and Ionization (SELDI). A clinic diagnostic test to improve cancer pathology may be accomplished by this technology. In this paper, aim at FDA-NCI Clinical Proteomics Program Databank, first preprocess carefully data, sort the key features according to class separability criteria and extract the key features according to principal component analysis(PCA), set the size of the hidden layer neurons based on experience. Percentage correct classification is 100%. The results of experiment are analyzed according to confusion matrix and the receiver operating characteristic plot.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Samples of patients with or without disease can be diagnosed by serum proteomic pattern. Protein mass spectra are created by applying Surface-Enhanced Laser Desorption and Ionization (SELDI). A clinic diagnostic test to improve cancer pathology may be accomplished by this technology. In this paper, aim at FDA-NCI Clinical Proteomics Program Databank, first preprocess carefully data, sort the key features according to class separability criteria and extract the key features according to principal component analysis(PCA), set the size of the hidden layer neurons based on experience. Percentage correct classification is 100%. The results of experiment are analyzed according to confusion matrix and the receiver operating characteristic plot.
癌症检测的前馈网络
可通过血清蛋白质组学模式诊断有无疾病的患者样本。蛋白质质谱是通过应用表面增强激光解吸和电离(SELDI)创建的。临床诊断测试,以改善癌症病理可以完成这项技术。本文针对FDA-NCI临床蛋白质组学程序数据库,首先对数据进行仔细预处理,根据类可分性标准对关键特征进行排序,并根据主成分分析(PCA)提取关键特征,根据经验设置隐藏层神经元的大小。正确分类的百分比为100%。根据混淆矩阵和接收机工作特性图对实验结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信