LiteReconfig

Ran Xu, Jayoung Lee, Pengcheng Wang, S. Bagchi, Yin Li, S. Chaterji
{"title":"LiteReconfig","authors":"Ran Xu, Jayoung Lee, Pengcheng Wang, S. Bagchi, Yin Li, S. Chaterji","doi":"10.1145/3492321.3519577","DOIUrl":null,"url":null,"abstract":"An adaptive video object detection system selects different execution paths at runtime, based on video content and available resources, so as to maximize accuracy under a target latency objective (e.g., 30 frames per second). Such a system is well suited to mobile devices with limited computing resources, and often running multiple contending applications. Existing solutions suffer from two major drawbacks. First, collecting feature values to decide on an execution branch is expensive. Second, there is a switching overhead for transitioning between branches and this overhead depends on the transition pair. LiteReconfig, an efficient and adaptive video object detection framework, addresses these challenges. LiteReconfig features a cost-benefit analyzer to decide which features to use, and which execution branch to run, at inference time. Furthermore, LiteReconfig has a content-aware accuracy prediction model, to select an execution branch tailored for frames in a video stream. We demonstrate that LiteReconfig achieves significantly improved accuracy under a set of varying latency objectives than existing systems, while maintaining up to 50 fps on an NVIDIA AGX Xavier board. Our code, with DOI, is available at https://doi.org/10.5281/zenodo.6345733.","PeriodicalId":196414,"journal":{"name":"Proceedings of the Seventeenth European Conference on Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventeenth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492321.3519577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An adaptive video object detection system selects different execution paths at runtime, based on video content and available resources, so as to maximize accuracy under a target latency objective (e.g., 30 frames per second). Such a system is well suited to mobile devices with limited computing resources, and often running multiple contending applications. Existing solutions suffer from two major drawbacks. First, collecting feature values to decide on an execution branch is expensive. Second, there is a switching overhead for transitioning between branches and this overhead depends on the transition pair. LiteReconfig, an efficient and adaptive video object detection framework, addresses these challenges. LiteReconfig features a cost-benefit analyzer to decide which features to use, and which execution branch to run, at inference time. Furthermore, LiteReconfig has a content-aware accuracy prediction model, to select an execution branch tailored for frames in a video stream. We demonstrate that LiteReconfig achieves significantly improved accuracy under a set of varying latency objectives than existing systems, while maintaining up to 50 fps on an NVIDIA AGX Xavier board. Our code, with DOI, is available at https://doi.org/10.5281/zenodo.6345733.
LiteReconfig
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信