Local approximation of curvature-bounded shape functions on S/sup 2/-diffeomorphic manifolds

Jianping Wang, I. Greenshields
{"title":"Local approximation of curvature-bounded shape functions on S/sup 2/-diffeomorphic manifolds","authors":"Jianping Wang, I. Greenshields","doi":"10.1109/ACSSC.1993.342446","DOIUrl":null,"url":null,"abstract":"The explosive growth in the availability of three-dimensional imaging technologies (such as magnetic resonance imagery (MRI) and computer-assisted tomography (CAT)) has transformed the issue of three-dimensional shape description from a purely abstract exercise in differential geometry to one with practical implications. The paper explores the problem of constructing a rotationally-invariant \"sampling lattice\" for objects which are diffeomorphic to the unit sphere whose shape functions are L/sup 2/ and bounded in norm with respect to their Laplacian by using local R/sup 2/ approximations to the S/sup 2/ shape functions. The approach used follows a line of argument presented by Daubechies (1990).<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The explosive growth in the availability of three-dimensional imaging technologies (such as magnetic resonance imagery (MRI) and computer-assisted tomography (CAT)) has transformed the issue of three-dimensional shape description from a purely abstract exercise in differential geometry to one with practical implications. The paper explores the problem of constructing a rotationally-invariant "sampling lattice" for objects which are diffeomorphic to the unit sphere whose shape functions are L/sup 2/ and bounded in norm with respect to their Laplacian by using local R/sup 2/ approximations to the S/sup 2/ shape functions. The approach used follows a line of argument presented by Daubechies (1990).<>
S/sup 2/-微分同态流形上曲率有界形状函数的局部逼近
三维成像技术(如磁共振成像(MRI)和计算机辅助断层扫描(CAT))的爆炸性增长已经将三维形状描述的问题从微分几何的纯粹抽象练习转变为具有实际意义的问题。利用S/sup 2/形状函数的局部R/sup 2/近似,研究了形状函数为L/sup 2/且模对拉普拉斯有界的单位球的微分同构对象的旋转不变“抽样格”问题。所使用的方法遵循了Daubechies(1990)提出的一系列论点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信