The consistency of the BIC Markov order estimator

I. Csiszár, P. Shields
{"title":"The consistency of the BIC Markov order estimator","authors":"I. Csiszár, P. Shields","doi":"10.1109/ISIT.2000.866316","DOIUrl":null,"url":null,"abstract":"We show that the BIC (Bayesian information criterion) estimator of the order of a Markov chain (with finite alphabet) gives the correct order, eventually almost surely as the sample size goes to /spl infin/, thereby strengthening earlier consistency results that assumed an apriori bound on the order. A key tool is a strong typicality result for Markov sample paths. We also show that the Bayesian or MDL estimator, of which the BIC estimator is regarded as an approximation, fails to be consistent for the uniformly distributed i.i.d. process.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"202","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 202

Abstract

We show that the BIC (Bayesian information criterion) estimator of the order of a Markov chain (with finite alphabet) gives the correct order, eventually almost surely as the sample size goes to /spl infin/, thereby strengthening earlier consistency results that assumed an apriori bound on the order. A key tool is a strong typicality result for Markov sample paths. We also show that the Bayesian or MDL estimator, of which the BIC estimator is regarded as an approximation, fails to be consistent for the uniformly distributed i.i.d. process.
BIC马尔可夫阶估计的相合性
我们证明了马尔可夫链(有限字母)阶数的BIC(贝叶斯信息准则)估计器给出了正确的阶数,最终几乎可以肯定,因为样本量达到/spl / /,从而加强了先前假设阶数先验界的一致性结果。一个关键工具是马尔可夫样本路径的强典型性结果。我们还证明了贝叶斯估计量或MDL估计量,其中BIC估计量被视为近似,对于均匀分布的i.i.d过程不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信