Heterogeneous Fair Resource Allocation and Scheduling for Big Data Streams in Cloud Environments

R. Kiruthiga, D. Akila
{"title":"Heterogeneous Fair Resource Allocation and Scheduling for Big Data Streams in Cloud Environments","authors":"R. Kiruthiga, D. Akila","doi":"10.1109/iccakm50778.2021.9357750","DOIUrl":null,"url":null,"abstract":"In this paper, Heterogeneous Fair Resource Allocation and Scheduling (HFRAS) for cloud based Big Data Streams, is proposed. In this algorithm, a weight value is determined for the user for each of the requested resource, based on the resource priorities. Then each task is assigned a task priority index (TPI) based on this weight value, task arrival time and expected end time (EET). The requested tasks are divided into various priority queues based on the TPI of the tasks assigned. Then tasks are sorted in the ascending order of TPI and scheduled in which the Dominant Resource Share (DRS) is determined for each user. Experimental results have shown that HFRAS attains lesser execution time, minimum response delay and maximum CPU utilization, when compared to the existing algorithm.","PeriodicalId":165854,"journal":{"name":"2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccakm50778.2021.9357750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, Heterogeneous Fair Resource Allocation and Scheduling (HFRAS) for cloud based Big Data Streams, is proposed. In this algorithm, a weight value is determined for the user for each of the requested resource, based on the resource priorities. Then each task is assigned a task priority index (TPI) based on this weight value, task arrival time and expected end time (EET). The requested tasks are divided into various priority queues based on the TPI of the tasks assigned. Then tasks are sorted in the ascending order of TPI and scheduled in which the Dominant Resource Share (DRS) is determined for each user. Experimental results have shown that HFRAS attains lesser execution time, minimum response delay and maximum CPU utilization, when compared to the existing algorithm.
云环境下大数据流异构公平资源分配与调度
本文提出了基于云的大数据流异构公平资源分配与调度(HFRAS)方法。在该算法中,根据资源优先级为用户确定每个请求资源的权重值。然后根据该权重值、任务到达时间和预期结束时间为每个任务分配一个任务优先级指数(TPI)。根据所分配任务的TPI,将请求的任务划分为各种优先级队列。然后按照TPI的升序对任务进行排序,并调度任务,确定每个用户的主导资源共享(DRS)。实验结果表明,与现有算法相比,HFRAS具有更短的执行时间、最小的响应延迟和最大的CPU利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信