DDOS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification

Alireza Shirmarz, A. Ghaffari, Ramin Mohammadi, S. Akleylek
{"title":"DDOS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification","authors":"Alireza Shirmarz, A. Ghaffari, Ramin Mohammadi, S. Akleylek","doi":"10.1109/ISCTURKEY53027.2021.9654403","DOIUrl":null,"url":null,"abstract":"Nowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches.","PeriodicalId":383915,"journal":{"name":"2021 International Conference on Information Security and Cryptology (ISCTURKEY)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Security and Cryptology (ISCTURKEY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTURKEY53027.2021.9654403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches.
利用集成分类提高软件定义网络(SDN)中DDOS攻击检测准确率
如今,拒绝服务(DOS)是一种重要的网络攻击,可以发生在互联网上。这种攻击可以由多个攻击者进行,在这种情况下称为分布式拒绝服务(DDOS)。攻击者通过恶意流量压倒资源,努力使资源(服务器和带宽)对合法流量不可用。需要适当的安全模块来准确识别恶意流,以防止DDOS攻击导致的失败。本文将针对软件定义网络(SDN)架构设计一个DDoS攻击鉴别器,使其能够部署在POX控制器中。仿真结果表明,该模型的准确率约为99.4%,与决策树(DT)、k近邻(KNN)、支持向量机(SVM)方法相比,有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信