Tractable Mode-Finding in Sum-Product Networks with Gaussian Leaves

Tiago Madeira, D. Mauá
{"title":"Tractable Mode-Finding in Sum-Product Networks with Gaussian Leaves","authors":"Tiago Madeira, D. Mauá","doi":"10.5753/eniac.2022.227582","DOIUrl":null,"url":null,"abstract":"In this work, we leverage the relation between Sum-Product Networks (SPNs) and Gaussian mixtures to propose an algorithm that adapts the Expectation-Maximization method to efficiently find the modes of SPNs with Gaussian leaves. We discuss how the algorithm can be used to perform Maximum-A-Posteriori inference in SPNs learned from continuous data with theoretical advantages over the existing methods in the literature, and how it can be used to shrink the size of learned models. As an additional example of the use of the algorithm, we perform an SPN-based hierarchical clustering of digit images. Thus, our proposed algorithm can be used for model analysis, model compression, and exploratory data analysis.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we leverage the relation between Sum-Product Networks (SPNs) and Gaussian mixtures to propose an algorithm that adapts the Expectation-Maximization method to efficiently find the modes of SPNs with Gaussian leaves. We discuss how the algorithm can be used to perform Maximum-A-Posteriori inference in SPNs learned from continuous data with theoretical advantages over the existing methods in the literature, and how it can be used to shrink the size of learned models. As an additional example of the use of the algorithm, we perform an SPN-based hierarchical clustering of digit images. Thus, our proposed algorithm can be used for model analysis, model compression, and exploratory data analysis.
高斯叶和积网络的可处理寻模
在这项工作中,我们利用和积网络(spn)和高斯混合之间的关系,提出了一种适应期望最大化方法的算法,以有效地找到具有高斯叶的spn的模式。我们讨论了如何使用该算法在从连续数据中学习的spn中执行最大后验推理,与文献中现有方法相比,该算法具有理论优势,以及如何使用它来缩小学习模型的大小。作为使用该算法的另一个示例,我们对数字图像执行基于spn的分层聚类。因此,我们提出的算法可以用于模型分析、模型压缩和探索性数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信