1-Extendability of independent sets

Pierre Berg'e, A. Busson, Carl Feghali, Rémi Watrigant
{"title":"1-Extendability of independent sets","authors":"Pierre Berg'e, A. Busson, Carl Feghali, Rémi Watrigant","doi":"10.48550/arXiv.2204.05809","DOIUrl":null,"url":null,"abstract":"In the 70s, Berge introduced 1-extendable graphs (also called B-graphs), which are graphs where every vertex belongs to a maximum independent set. Motivated by an application in the design of wireless networks, we study the computational complexity of 1-extendability, the problem of deciding whether a graph is 1-extendable. We show that, in general, 1-extendability cannot be solved in $2^{o(n)}$ time assuming the Exponential Time Hypothesis, where $n$ is the number of vertices of the input graph, and that it remains NP-hard in subcubic planar graphs and in unit disk graphs (which is a natural model for wireless networks). Although 1-extendability seems to be very close to the problem of finding an independent set of maximum size (a.k.a. Maximum Independent Set), we show that, interestingly, there exist 1-extendable graphs for which Maximum Independent Set is NP-hard. Finally, we investigate a parameterized version of 1-extendability.","PeriodicalId":403593,"journal":{"name":"International Workshop on Combinatorial Algorithms","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Combinatorial Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.05809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the 70s, Berge introduced 1-extendable graphs (also called B-graphs), which are graphs where every vertex belongs to a maximum independent set. Motivated by an application in the design of wireless networks, we study the computational complexity of 1-extendability, the problem of deciding whether a graph is 1-extendable. We show that, in general, 1-extendability cannot be solved in $2^{o(n)}$ time assuming the Exponential Time Hypothesis, where $n$ is the number of vertices of the input graph, and that it remains NP-hard in subcubic planar graphs and in unit disk graphs (which is a natural model for wireless networks). Although 1-extendability seems to be very close to the problem of finding an independent set of maximum size (a.k.a. Maximum Independent Set), we show that, interestingly, there exist 1-extendable graphs for which Maximum Independent Set is NP-hard. Finally, we investigate a parameterized version of 1-extendability.
独立集的可拓性
在70年代,Berge引入了1-可扩展图(也称为b图),这种图的每个顶点都属于一个最大独立集。以无线网络设计中的一个应用为背景,研究了图是否为可扩展图的计算复杂度问题。我们证明,一般来说,1-可扩展性不能在$2^{o(n)}$时间内解决,假设指数时间假设,其中$n$是输入图的顶点数,并且它在次立方平面图和单位磁盘图中仍然是NP-hard(这是无线网络的自然模型)。尽管1-可扩展性似乎非常接近于寻找最大大小的独立集(即最大独立集)的问题,但我们证明,有趣的是,存在1-可扩展性图,其中最大独立集是np困难的。最后,我们研究了1-可扩展性的参数化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信