{"title":"Optimizing Additive Approximations of Non-additive Distortion Functions","authors":"Solène Bernard, P. Bas, T. Pevný, John Klein","doi":"10.1145/3437880.3460407","DOIUrl":null,"url":null,"abstract":"The progress in steganography is hampered by a gap between non-additive distortion functions, which capture well complex dependencies in natural images, and their additive counterparts, which are efficient for data embedding. This paper proposes a theoretically justified method to approximate the former by the latter. The proposed method, called Backpack (for BACKPropagable AttaCK), combines new results in the approximation of gradients of discrete distributions with a gradient of implicit functions in order to derive a gradient w.r.t. the distortion of each JPEG coefficient. Backpack combined with the min max iterative protocol leads to a very secure steganographic algorithm. For example, the error rate of XuNet on 512 X 512 JPEG images, compressed with quality factor 100 and a payload of 0.4 bits per non-zero AC coefficient is 37.3% with Backpack, compared to a 26.5% error rate using ADV-EMB with minmax (considered state of the art in this work) and a 16.9% error rate with J-UNIWARD.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The progress in steganography is hampered by a gap between non-additive distortion functions, which capture well complex dependencies in natural images, and their additive counterparts, which are efficient for data embedding. This paper proposes a theoretically justified method to approximate the former by the latter. The proposed method, called Backpack (for BACKPropagable AttaCK), combines new results in the approximation of gradients of discrete distributions with a gradient of implicit functions in order to derive a gradient w.r.t. the distortion of each JPEG coefficient. Backpack combined with the min max iterative protocol leads to a very secure steganographic algorithm. For example, the error rate of XuNet on 512 X 512 JPEG images, compressed with quality factor 100 and a payload of 0.4 bits per non-zero AC coefficient is 37.3% with Backpack, compared to a 26.5% error rate using ADV-EMB with minmax (considered state of the art in this work) and a 16.9% error rate with J-UNIWARD.