ICE: Interactive Classification Rule Exploration on Epidemiological Data

Miro Schleicher, T. Ittermann, Uli Niemann, H. Völzke, M. Spiliopoulou
{"title":"ICE: Interactive Classification Rule Exploration on Epidemiological Data","authors":"Miro Schleicher, T. Ittermann, Uli Niemann, H. Völzke, M. Spiliopoulou","doi":"10.1109/CBMS.2017.127","DOIUrl":null,"url":null,"abstract":"Personalized medicine benefits from the identification of subpopulations that exhibit higher prevalence of a disease than the general population: such subpopulations can become the target of more intensive investigations to identify risk factors and to develop dedicated therapies. Classification rule discovery algorithms are an appropriate tool for discovering such subpopulations: they scale well, even for multi-dimensional data and deliver comprehensible patterns. However, they may generate hundreds of rules and thus call for exploration methods. In this study, we extend the tool Interactive Medical Miner for the discovery of classification rules, into the Interactive Classification rule Explorer ICE, which offers functionalities for rule exploration, grouping, rule visualization and statistics. We report on our first results for the classification of cohort data on goiter, a disorder of the thyroid gland.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Personalized medicine benefits from the identification of subpopulations that exhibit higher prevalence of a disease than the general population: such subpopulations can become the target of more intensive investigations to identify risk factors and to develop dedicated therapies. Classification rule discovery algorithms are an appropriate tool for discovering such subpopulations: they scale well, even for multi-dimensional data and deliver comprehensible patterns. However, they may generate hundreds of rules and thus call for exploration methods. In this study, we extend the tool Interactive Medical Miner for the discovery of classification rules, into the Interactive Classification rule Explorer ICE, which offers functionalities for rule exploration, grouping, rule visualization and statistics. We report on our first results for the classification of cohort data on goiter, a disorder of the thyroid gland.
流行病学数据的交互式分类规则探索
个性化医疗受益于确定比一般人群表现出更高疾病患病率的亚人群:这些亚人群可以成为更深入调查的目标,以确定风险因素并开发专用疗法。分类规则发现算法是发现此类子种群的合适工具:它们具有良好的可伸缩性,即使对于多维数据也是如此,并且提供可理解的模式。然而,它们可能产生数百条规则,因此需要探索方法。在本研究中,我们将用于发现分类规则的交互式医疗矿工工具扩展为交互式分类规则浏览器ICE,它提供了规则探索,分组,规则可视化和统计功能。我们报告了我们对甲状腺肿(一种甲状腺疾病)队列数据分类的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信