V. Simić, M. Milošević, I. Šaveljić, B. Milićević, N. Filipovic, M. Kojic
{"title":"3D reconstruction and computational modeling of solid-fluid interaction in realistic heart model","authors":"V. Simić, M. Milošević, I. Šaveljić, B. Milićević, N. Filipovic, M. Kojic","doi":"10.1109/BIBE52308.2021.9635284","DOIUrl":null,"url":null,"abstract":"In this report we present basic steps in the 3D reconstruction process of DICOM images and application of our finite element (FE) numerical procedure for loose coupling solid-fluid interaction, to simulate a complete heartbeat cycle for a realistic model of the left heart side. Passive mechanical stresses are calculated using an orthotropic material model based on the experimental investigation of passive material properties of the myocardium, while active stresses are calculated using the Hunter material model. The basic equations for solid mechanics, fluid dynamics, and muscle activation are summarized and model applicability is illustrated on a complex realistic model which includes a left atrium, ventricle, mitral and aortic valves (which serve as fluid domain) coupled with solid wall with realistic fiber directions.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this report we present basic steps in the 3D reconstruction process of DICOM images and application of our finite element (FE) numerical procedure for loose coupling solid-fluid interaction, to simulate a complete heartbeat cycle for a realistic model of the left heart side. Passive mechanical stresses are calculated using an orthotropic material model based on the experimental investigation of passive material properties of the myocardium, while active stresses are calculated using the Hunter material model. The basic equations for solid mechanics, fluid dynamics, and muscle activation are summarized and model applicability is illustrated on a complex realistic model which includes a left atrium, ventricle, mitral and aortic valves (which serve as fluid domain) coupled with solid wall with realistic fiber directions.