Visual Diagrammatic Queries in ViziQuer: Overview and Implementation

Julija Ovcinnikova, A. Sostaks, Kārlis Čerāns
{"title":"Visual Diagrammatic Queries in ViziQuer: Overview and Implementation","authors":"Julija Ovcinnikova, A. Sostaks, Kārlis Čerāns","doi":"10.48550/arXiv.2304.14825","DOIUrl":null,"url":null,"abstract":"Knowledge graphs (KG) have become an important data organization paradigm. The available textual query languages for information retrieval from KGs, as SPARQL for RDF-structured data, do not provide means for involving non-technical experts in the data access process. Visual query formalisms, alongside form-based and natural language-based ones, offer means for easing user involvement in the data querying process. ViziQuer is a visual query notation and tool offering visual diagrammatic means for describing rich data queries, involving optional and negation constructs, as well as aggregation and subqueries. In this paper we review the visual ViziQuer notation from the end-user point of view and describe the conceptual and technical solutions (including abstract syntax model, followed by a generation model for textual queries) that allow mapping of the visual diagrammatic query notation into the textual SPARQL language, thus enabling the execution of rich visual queries over the actual knowledge graphs. The described solutions demonstrate the viability of the model-based approach in translating complex visual notation into a complex textual one; they serve as semantics by implementation description of the ViziQuer language and provide building blocks for further services in the ViziQuer tool context.","PeriodicalId":431209,"journal":{"name":"Balt. J. Mod. Comput.","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Balt. J. Mod. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.14825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graphs (KG) have become an important data organization paradigm. The available textual query languages for information retrieval from KGs, as SPARQL for RDF-structured data, do not provide means for involving non-technical experts in the data access process. Visual query formalisms, alongside form-based and natural language-based ones, offer means for easing user involvement in the data querying process. ViziQuer is a visual query notation and tool offering visual diagrammatic means for describing rich data queries, involving optional and negation constructs, as well as aggregation and subqueries. In this paper we review the visual ViziQuer notation from the end-user point of view and describe the conceptual and technical solutions (including abstract syntax model, followed by a generation model for textual queries) that allow mapping of the visual diagrammatic query notation into the textual SPARQL language, thus enabling the execution of rich visual queries over the actual knowledge graphs. The described solutions demonstrate the viability of the model-based approach in translating complex visual notation into a complex textual one; they serve as semantics by implementation description of the ViziQuer language and provide building blocks for further services in the ViziQuer tool context.
ViziQuer中的可视化图表查询:概述和实现
知识图(KG)已成为一种重要的数据组织范式。用于从kg中检索信息的可用文本查询语言,如用于rdf结构化数据的SPARQL,并没有提供让非技术专家参与数据访问过程的方法。可视化查询形式化,以及基于表单和基于自然语言的形式化,提供了简化用户参与数据查询过程的方法。ViziQuer是一个可视化的查询符号和工具,提供可视化的图表方式来描述富数据查询,包括可选和否定结构,以及聚合和子查询。在本文中,我们从最终用户的角度回顾了可视化ViziQuer符号,并描述了概念和技术解决方案(包括抽象语法模型,然后是文本查询的生成模型),这些解决方案允许将可视化图表查询符号映射到文本SPARQL语言中,从而能够在实际知识图上执行丰富的可视化查询。所描述的解决方案证明了基于模型的方法在将复杂的视觉符号转换为复杂的文本符号方面的可行性;它们通过ViziQuer语言的实现描述充当语义,并为ViziQuer工具上下文中的进一步服务提供构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信