Twitter Sentiment Analysis Using Recurrent Neural Network

Iraj Smitesh Shah
{"title":"Twitter Sentiment Analysis Using Recurrent Neural Network","authors":"Iraj Smitesh Shah","doi":"10.24940/theijst/2022/v10/i10/st2210-003","DOIUrl":null,"url":null,"abstract":"Being one of the largest social media platforms, Twitter has a diverse community collaborating on a multitude of ideas. With large amounts of data being generated and collected on Twitter every day, it is the perfect platform to implement machine learning algorithms to analyze information in different tweets. A recurrent Neural Network (RNN) is a specific algorithm that is used to solve problems involving sequential data such as texts or time series. In this paper, we use RNNs to classify a given tweet as either a positive or a negative sentiment. The RNN model we describe below was able to reach an accuracy of 76%. ","PeriodicalId":153770,"journal":{"name":"The International Journal of Science & Technoledge","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Science & Technoledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24940/theijst/2022/v10/i10/st2210-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Being one of the largest social media platforms, Twitter has a diverse community collaborating on a multitude of ideas. With large amounts of data being generated and collected on Twitter every day, it is the perfect platform to implement machine learning algorithms to analyze information in different tweets. A recurrent Neural Network (RNN) is a specific algorithm that is used to solve problems involving sequential data such as texts or time series. In this paper, we use RNNs to classify a given tweet as either a positive or a negative sentiment. The RNN model we describe below was able to reach an accuracy of 76%. 
利用递归神经网络分析Twitter情绪
作为最大的社交媒体平台之一,Twitter拥有一个多元化的社区,他们就各种各样的想法进行合作。Twitter每天都会产生和收集大量数据,因此它是实现机器学习算法来分析不同推文信息的完美平台。递归神经网络(RNN)是一种特定的算法,用于解决涉及文本或时间序列等顺序数据的问题。在本文中,我们使用rnn将给定的tweet分类为积极或消极情绪。我们下面描述的RNN模型能够达到76%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信