Smart Computing to Gauge Time Series Change of TFR and Average Family Size by Indonesia Provinces

Y. Shirota, Diahhadi Setyonaluri
{"title":"Smart Computing to Gauge Time Series Change of TFR and Average Family Size by Indonesia Provinces","authors":"Y. Shirota, Diahhadi Setyonaluri","doi":"10.1109/IIAI-AAI.2019.00148","DOIUrl":null,"url":null,"abstract":"A new smart time series data analysis method, the statistical shape analysis is presented. The method was originally developed for image analysis in biology. However, the analysis power can also be used in social science and economics. The advantage is to extract separately Affine transformation part and non-Affine one from the shape deformation. The Affine transformation shows the whole trend of the data change. The non-Affine one shows local movements, compared to others. In the paper, we shall visualize the analysis results using the TFR and family average size data of Indonesia provinces.","PeriodicalId":136474,"journal":{"name":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2019.00148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new smart time series data analysis method, the statistical shape analysis is presented. The method was originally developed for image analysis in biology. However, the analysis power can also be used in social science and economics. The advantage is to extract separately Affine transformation part and non-Affine one from the shape deformation. The Affine transformation shows the whole trend of the data change. The non-Affine one shows local movements, compared to others. In the paper, we shall visualize the analysis results using the TFR and family average size data of Indonesia provinces.
智能计算衡量印尼各省TFR和平均家庭规模的时间序列变化
提出了一种新的智能时间序列数据分析方法——统计形状分析法。该方法最初是为生物学中的图像分析而开发的。然而,分析能力也可以用于社会科学和经济学。其优点是可以从形状变形中分别提取仿射变换部分和非仿射变换部分。仿射变换显示了数据变化的整体趋势。非仿射信号显示的是局部运动,与其他信号相比。在本文中,我们将使用印度尼西亚各省的TFR和家庭平均规模数据来可视化分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信