Simulasi Model Diskrit Respon Sistem Imun pada Penyebaran Tumor Otak dengan Metode Beda Hingga Standar

Icha Zakiyya Nafisah Roza, Usman Pagalay, Heni Widayani
{"title":"Simulasi Model Diskrit Respon Sistem Imun pada Penyebaran Tumor Otak dengan Metode Beda Hingga Standar","authors":"Icha Zakiyya Nafisah Roza, Usman Pagalay, Heni Widayani","doi":"10.18860/jrmm.v1i2.14045","DOIUrl":null,"url":null,"abstract":"Tumor otak merupakan penyakit dimana jaringan dalam sistem saraf pusat tumbuh secara abnormal. Pertumbuhan tumor tersebut mengalami interaksi dengan sistem imun untuk menghambat pertumbuhan tumor, hal tersebut dapat dideskripsikan dalam model matematika yang berbentuk persamaan diferensial biasa. Model matematika penyebaran tumor otak dengan respon sistem imun pada penelitian ini terdapat lima variabel yaitu, glioma , makrofag , sel T CD    TGF-   , dan IFN- . Model tersebut akan didiskritisasi dengan menggunakan metode beda hingga standar. Metode beda hingga standar atau metode euler merupakan metode yang diturunkan dari deret Taylor. Berdasarkan hasil analisis diketahui bahwa model diskrit penyebaran tumor otak dengan respon sistem imun memiliki jenis kestabilan model diskrit sama dengan model kontinunya dan memiliki dua titik kesetimbangan, yaitu kesetimbangan bebas penyakit dan kesetimbangan endemik. Titik kesetimbangan bebas penyakit dan endemik bersifat stabil asimtotik apabila memenuhi kriteria kestabilan Schur-Cohn. Simulasi numerik dilakukan untuk mengilustrasikan dan menguji hasil analisis yang diperoleh. Hasil simulasi numerik diperoleh bahwa model diskrit akan sama dengan model kontinunya saat  tertentu.","PeriodicalId":270235,"journal":{"name":"Jurnal Riset Mahasiswa Matematika","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Mahasiswa Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/jrmm.v1i2.14045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor otak merupakan penyakit dimana jaringan dalam sistem saraf pusat tumbuh secara abnormal. Pertumbuhan tumor tersebut mengalami interaksi dengan sistem imun untuk menghambat pertumbuhan tumor, hal tersebut dapat dideskripsikan dalam model matematika yang berbentuk persamaan diferensial biasa. Model matematika penyebaran tumor otak dengan respon sistem imun pada penelitian ini terdapat lima variabel yaitu, glioma , makrofag , sel T CD    TGF-   , dan IFN- . Model tersebut akan didiskritisasi dengan menggunakan metode beda hingga standar. Metode beda hingga standar atau metode euler merupakan metode yang diturunkan dari deret Taylor. Berdasarkan hasil analisis diketahui bahwa model diskrit penyebaran tumor otak dengan respon sistem imun memiliki jenis kestabilan model diskrit sama dengan model kontinunya dan memiliki dua titik kesetimbangan, yaitu kesetimbangan bebas penyakit dan kesetimbangan endemik. Titik kesetimbangan bebas penyakit dan endemik bersifat stabil asimtotik apabila memenuhi kriteria kestabilan Schur-Cohn. Simulasi numerik dilakukan untuk mengilustrasikan dan menguji hasil analisis yang diperoleh. Hasil simulasi numerik diperoleh bahwa model diskrit akan sama dengan model kontinunya saat  tertentu.
模拟一种离散的免疫反应系统对脑瘤分布的不同方法
脑瘤是中枢神经系统组织异常生长的一种疾病。肿瘤的生长经历与免疫系统的相互作用以抑制肿瘤的生长,这可以用通常的微分方程的数学模型来描述。该研究包括五个变量,即胶质瘤、巨蛋白、T细胞TGF和IFN。该模型将通过使用不同到标准的方法对其进行消毒。不同的方法到欧拉标准或方法是从泰勒等级传下来的方法。根据一项已知的分析,离散性脑肿瘤在免疫系统反应方面的不稳定模式与恒定模式相同,它有两个平衡点,即无疾病平衡和温差平衡。如果符合舒尔科恩的稳定性标准,不患疾病和地方病的平衡点是稳定的。进行数字模拟以说明和测试所获得的分析结果。通过数字模拟,离散的模型将与当前的连续模型相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信