Unknown Radar Signals Deinterleaving Based on TCN Network

Liying Ma, Xueqiong Li, Yuhua Tang
{"title":"Unknown Radar Signals Deinterleaving Based on TCN Network","authors":"Liying Ma, Xueqiong Li, Yuhua Tang","doi":"10.1145/3590003.3590038","DOIUrl":null,"url":null,"abstract":"Radar signals deinterleaving plays a critical role in electronic reconnaissance. Nevertheless, due to the extremely high density of intercepted signal trains and the unknown number of emitters, along with the low probability of interception (LPI), high loss rate, and high spurious rate, the deinterleaving task is becoming more challenging. In this paper, we propose a temporal convolutional network (TCN)-based method for deinterleaving radar signal pulse trains, using only the time of arrival (TOA) parameter without knowing how many emitters there are. Simulation results indicate that the proposed method can still achieve high accuracy in situations with high pulse loss and spurious rates.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radar signals deinterleaving plays a critical role in electronic reconnaissance. Nevertheless, due to the extremely high density of intercepted signal trains and the unknown number of emitters, along with the low probability of interception (LPI), high loss rate, and high spurious rate, the deinterleaving task is becoming more challenging. In this paper, we propose a temporal convolutional network (TCN)-based method for deinterleaving radar signal pulse trains, using only the time of arrival (TOA) parameter without knowing how many emitters there are. Simulation results indicate that the proposed method can still achieve high accuracy in situations with high pulse loss and spurious rates.
基于TCN网络的未知雷达信号去交织
雷达信号解交织在电子侦察中起着至关重要的作用。然而,由于截获信号序列的密度极高,发射器数量未知,再加上截获概率(LPI)低、损失率高、杂散率高,使得去交错任务变得更加具有挑战性。在本文中,我们提出了一种基于时间卷积网络(TCN)的雷达信号脉冲序列分离方法,该方法只使用到达时间(TOA)参数,而不知道有多少发射器。仿真结果表明,该方法在高脉冲损耗和高杂散率的情况下仍能达到较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信