BOUNDS ON MULTI-ASSET DERIVATIVES VIA NEURAL NETWORKS

Luca De Gennaro Aquino, C. Bernard
{"title":"BOUNDS ON MULTI-ASSET DERIVATIVES VIA NEURAL NETWORKS","authors":"Luca De Gennaro Aquino, C. Bernard","doi":"10.1142/s0219024920500508","DOIUrl":null,"url":null,"abstract":"Using neural networks, we compute bounds on the prices of multi-asset derivatives given information on prices of related payoffs. As a main example, we focus on European basket options and include information on the prices of other similar options, such as spread options and/or basket options on subindices. We show that, in most cases, adding further constraints gives rise to bounds that are considerably tighter and discuss the maximizing/minimizing copulas achieving such bounds. Our approach follows the literature on constrained optimal transport and, in particular, builds on a recent paper by Eckstein and Kupper (2019, Appl. Math. Optim.).","PeriodicalId":197400,"journal":{"name":"arXiv: Computational Finance","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219024920500508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Using neural networks, we compute bounds on the prices of multi-asset derivatives given information on prices of related payoffs. As a main example, we focus on European basket options and include information on the prices of other similar options, such as spread options and/or basket options on subindices. We show that, in most cases, adding further constraints gives rise to bounds that are considerably tighter and discuss the maximizing/minimizing copulas achieving such bounds. Our approach follows the literature on constrained optimal transport and, in particular, builds on a recent paper by Eckstein and Kupper (2019, Appl. Math. Optim.).
基于神经网络的多资产衍生品边界
利用神经网络,我们计算了给定相关收益价格信息的多资产衍生品的价格边界。作为一个主要的例子,我们关注欧洲一篮子期权,并包括其他类似期权的价格信息,如分指数的点差期权和/或一篮子期权。我们表明,在大多数情况下,增加进一步的约束会产生相当严格的边界,并讨论实现这种边界的最大化/最小化联结。我们的方法遵循了关于约束最优运输的文献,特别是建立在Eckstein和Kupper(2019年,苹果公司)最近的一篇论文之上。数学。Optim)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信