Spherical basis function approximation with particular trend functions

K. Segeth
{"title":"Spherical basis function approximation with particular trend functions","authors":"K. Segeth","doi":"10.21136/panm.2022.20","DOIUrl":null,"url":null,"abstract":"The paper is concerned with the measurement of scalar physical quantities at nodes on the $(d-1)$-dimensional unit sphere surface in the \\hbox{$d$-dimensional} Euclidean space and the spherical RBF interpolation of the data obtained. In particular, we consider $d=3$. We employ an inverse multiquadric as the radial basis function and the corresponding trend is a polynomial of degree 2 defined in Cartesian coordinates. We prove the existence of the interpolation formula of the type considered. The formula can be useful in the interpretation of many physical measurements. We show an example concerned with the measurement of anisotropy of magnetic susceptibility having extensive applications in geosciences and present numerical difficulties connected with the high condition number of the matrix of the system defining the interpolation.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is concerned with the measurement of scalar physical quantities at nodes on the $(d-1)$-dimensional unit sphere surface in the \hbox{$d$-dimensional} Euclidean space and the spherical RBF interpolation of the data obtained. In particular, we consider $d=3$. We employ an inverse multiquadric as the radial basis function and the corresponding trend is a polynomial of degree 2 defined in Cartesian coordinates. We prove the existence of the interpolation formula of the type considered. The formula can be useful in the interpretation of many physical measurements. We show an example concerned with the measurement of anisotropy of magnetic susceptibility having extensive applications in geosciences and present numerical difficulties connected with the high condition number of the matrix of the system defining the interpolation.
具有特定趋势函数的球面基函数近似
本文研究了在欧几里德空间中$(d-1)$维单位球面上节点处标量物理量的测量,并对得到的数据进行了球面RBF插值。特别地,我们考虑d=3。我们采用逆多重二次函数作为径向基函数,相应的趋势是在笛卡尔坐标系中定义的2次多项式。证明了所考虑类型的插值公式的存在性。这个公式在解释许多物理测量值时很有用。我们给出了一个在地球科学中广泛应用的磁化率各向异性测量的例子,并提出了与定义插值的系统矩阵的高条件数有关的数值困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信