{"title":"A","authors":"Gunston Cove, W. Wilson, Noman M. Cole","doi":"10.1515/9780748680719-005","DOIUrl":null,"url":null,"abstract":"To assist waste management decision-making, there is a need to assess the economics of commercial-scale reuse of recirculating aquaculture system (RAS) effluent in horticulture. This study compared the feasibility/viability of using two representative horticulture systems, considering their distinct hydrological characteristics, in horticultural reuse schemes for RAS effluent. These representative systems included a soil-based system in field conditions (SOILFIELD) and a hydroponic system in greenhouse conditions (HYDRO-GH). A novel two-step hydroeconomic modelling approach was used to quantify and compare the effluent storage volume, total land area, capital expenditure and crop price required for feasible/viable end-of-pipe reuse in the two systems. The modelling assessed several water management scenarios across four Australian climates. Results showed HYDRO-GH, reusing 100% of the annual effluent load and targeting an internal rate of return of 11.0%, required approximately 3 times more land, 14 times more capital expenditure and 5 times the crop price of SOIL-FIELD, targeting a 3.6% internal rate of return. As well as comparing two horticulture systems, this study presents a method to assess feasibility/viability of horticultural reuse schemes for other industrial wastewaters, using a water balance design approach.","PeriodicalId":396829,"journal":{"name":"A Glossary of Applied Linguistics","volume":"25 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Glossary of Applied Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780748680719-005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To assist waste management decision-making, there is a need to assess the economics of commercial-scale reuse of recirculating aquaculture system (RAS) effluent in horticulture. This study compared the feasibility/viability of using two representative horticulture systems, considering their distinct hydrological characteristics, in horticultural reuse schemes for RAS effluent. These representative systems included a soil-based system in field conditions (SOILFIELD) and a hydroponic system in greenhouse conditions (HYDRO-GH). A novel two-step hydroeconomic modelling approach was used to quantify and compare the effluent storage volume, total land area, capital expenditure and crop price required for feasible/viable end-of-pipe reuse in the two systems. The modelling assessed several water management scenarios across four Australian climates. Results showed HYDRO-GH, reusing 100% of the annual effluent load and targeting an internal rate of return of 11.0%, required approximately 3 times more land, 14 times more capital expenditure and 5 times the crop price of SOIL-FIELD, targeting a 3.6% internal rate of return. As well as comparing two horticulture systems, this study presents a method to assess feasibility/viability of horticultural reuse schemes for other industrial wastewaters, using a water balance design approach.