Lucas-Kanade Optical Flow Based Camera Motion Estimation Approach

Zelin Meng, Xiangbo Kong, Lin Meng, Hiroyuki Tomiyama
{"title":"Lucas-Kanade Optical Flow Based Camera Motion Estimation Approach","authors":"Zelin Meng, Xiangbo Kong, Lin Meng, Hiroyuki Tomiyama","doi":"10.1109/ISOCC47750.2019.9027696","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative of our previously proposed lightweight camera motion estimation method based on descriptor matching. First, based on the FAST feature and Lucas-Kanade Optical flow approach, we obtain tracked feature point pairs of two frames of input image. Secondly, according to the obtained pixel coordinates of the tracking point pairs, the motion of the camera can be estimated by the epipolar geometry method. The experiment results indicate that our proposed work can provide a 25% improvement in time-efficiency relative to our previous work. So that it can have higher suitability and possibility of implementation in low-power computing platforms.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9027696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an alternative of our previously proposed lightweight camera motion estimation method based on descriptor matching. First, based on the FAST feature and Lucas-Kanade Optical flow approach, we obtain tracked feature point pairs of two frames of input image. Secondly, according to the obtained pixel coordinates of the tracking point pairs, the motion of the camera can be estimated by the epipolar geometry method. The experiment results indicate that our proposed work can provide a 25% improvement in time-efficiency relative to our previous work. So that it can have higher suitability and possibility of implementation in low-power computing platforms.
基于Lucas-Kanade光流的摄像机运动估计方法
本文提出了一种基于描述子匹配的轻型摄像机运动估计方法的替代方案。首先,基于FAST特征和Lucas-Kanade光流方法,获得两帧输入图像的跟踪特征点对;其次,根据得到的跟踪点对像素坐标,利用极几何方法估计相机的运动;实验结果表明,与之前的工作相比,我们提出的工作可以提高25%的时间效率。使其在低功耗计算平台上具有更高的适用性和实现可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信