Homoderivations in Prime Rings

Ayşe Engi̇n, Neşet Aydin
{"title":"Homoderivations in Prime Rings","authors":"Ayşe Engi̇n, Neşet Aydin","doi":"10.53570/jnt.1258402","DOIUrl":null,"url":null,"abstract":"The study consists of two parts. The first part shows that if $h_{1}(x)h_{2}(y)=h_{3}(x)h_{4}(y)$, for all $x,y\\in R$, then $ h_{1}=h_{3}$ and $h_{2}=h_{4}$. Here, $h_{1},h_{2},h_{3},$ and $h_{4}$ are zero-power valued non-zero homoderivations of a prime ring $R$. Moreover, this study provide an explanation related to $h_{1}$ and $h_{2}$ satisfying the condition $ah_{1}+h_{2}b=0$. The second part shows that $L\\subseteq Z$ if one of the following conditions is satisfied: $i. h(L)=(0)$, $ ii. h(L)\\subseteq Z$, $iii. h(xy)=xy$, for all $x,y\\in L$, $iv. h(xy)=yx$, for all $x,y\\in L$, or $v. h([x,y])=0$, and for all $x,y\\in L$. Here, $R$ is a prime ring with a characteristic other than $2$, $h$ is a homoderivation of $R$, and $L$ is a non-zero square closed Lie ideal of $R$.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1258402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study consists of two parts. The first part shows that if $h_{1}(x)h_{2}(y)=h_{3}(x)h_{4}(y)$, for all $x,y\in R$, then $ h_{1}=h_{3}$ and $h_{2}=h_{4}$. Here, $h_{1},h_{2},h_{3},$ and $h_{4}$ are zero-power valued non-zero homoderivations of a prime ring $R$. Moreover, this study provide an explanation related to $h_{1}$ and $h_{2}$ satisfying the condition $ah_{1}+h_{2}b=0$. The second part shows that $L\subseteq Z$ if one of the following conditions is satisfied: $i. h(L)=(0)$, $ ii. h(L)\subseteq Z$, $iii. h(xy)=xy$, for all $x,y\in L$, $iv. h(xy)=yx$, for all $x,y\in L$, or $v. h([x,y])=0$, and for all $x,y\in L$. Here, $R$ is a prime ring with a characteristic other than $2$, $h$ is a homoderivation of $R$, and $L$ is a non-zero square closed Lie ideal of $R$.
素环上的同导
本研究由两部分组成。第一部分显示,如果美元h_ {1} (x) h_ {2} (y) = h_ {3} (x) h_ {4} (y) $, $ x, y \ R美元,那么美元h_ {1} = h_{3} $和$ h_ {2} = h_{4} $。这里,$ h_{1}, $h_{2}, $h_{3},$和$h_{4}$是素环$R$的零幂非零同导。此外,本研究还提供了$h_{1}$和$h_{2}$满足$ah_{1}+h_{2}b=0$的解释。第二部分表明,如果满足下列条件之一,则$L\subseteq Z$:h(L)=(0)$, $ ii。h(L)\subseteq Z$, $iii。h(xy)=xy$,对于所有$x,y\in L$, $iv。h(xy)=yx$,对于L$中的所有$x,y $,或$v。h([x,y])=0$,并且对于所有$x,y\in L$。这里,$R$是一个具有与$2$不同的特征的素环,$h$是$R$的齐次导数,$L$是$R$的非零平方闭李理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信