New findings on the Zeros of Fourier Integrals

A. J. Noushin, M. Fiddy
{"title":"New findings on the Zeros of Fourier Integrals","authors":"A. J. Noushin, M. Fiddy","doi":"10.1364/srs.1998.stud.2","DOIUrl":null,"url":null,"abstract":"There has been considerable interest over the years in the so-called Fourier phase retrieval problem. Applications abound and it still remains a difficult problem. Based on the analytic properties of bandlimited functions, it is well known that the 1D phase retrieval problem generally has no unique solution. The lack of uniqueness arises from the existence of complex zeros located off the real axis, i.e. in the complex plane. These analytic properties also suggest that in 2D or higher dimensional problems there is a unique solution1. The question is how to find this “unique” solution, especially when only noisy sampled power spectral data are available. Indeed, the meaning of uniqueness needs to be redefined under these circumstances.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1998.stud.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There has been considerable interest over the years in the so-called Fourier phase retrieval problem. Applications abound and it still remains a difficult problem. Based on the analytic properties of bandlimited functions, it is well known that the 1D phase retrieval problem generally has no unique solution. The lack of uniqueness arises from the existence of complex zeros located off the real axis, i.e. in the complex plane. These analytic properties also suggest that in 2D or higher dimensional problems there is a unique solution1. The question is how to find this “unique” solution, especially when only noisy sampled power spectral data are available. Indeed, the meaning of uniqueness needs to be redefined under these circumstances.
傅里叶积分零点的新发现
多年来,人们对所谓的傅立叶相位恢复问题产生了相当大的兴趣。应用广泛,但仍然是一个难题。基于带限函数的解析性质,一维相位恢复问题通常没有唯一解。缺乏唯一性是由于在实轴以外,即在复平面上存在复零。这些解析性质还表明,在二维或高维问题中存在唯一解1。问题是如何找到这个“唯一”的解决方案,特别是当只有噪声采样功率谱数据可用时。事实上,在这种情况下,独特性的含义需要重新定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信