Efficient split linear multistep methods for stiff ordinary differential equations

D. Voss, M. Casper
{"title":"Efficient split linear multistep methods for stiff ordinary differential equations","authors":"D. Voss, M. Casper","doi":"10.1137/0910058","DOIUrl":null,"url":null,"abstract":"A new family of predictor-corrector schemes is designed for the numerical solution of stiff differential systems. Based on split Adams–Moulton formulas through sixth order, members of the new family achieve higher order and possess smaller error constants than corresponding split backward differentiation formulas of the same stepnumber, while maintaining similar stability properties. Some confirmation of this is obtained using a variable step implementation on test problems from the literature.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"100 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A new family of predictor-corrector schemes is designed for the numerical solution of stiff differential systems. Based on split Adams–Moulton formulas through sixth order, members of the new family achieve higher order and possess smaller error constants than corresponding split backward differentiation formulas of the same stepnumber, while maintaining similar stability properties. Some confirmation of this is obtained using a variable step implementation on test problems from the literature.
求解刚性常微分方程的有效分段线性多步方法
针对刚性微分系统的数值解,设计了一种新的预测-校正格式。在六阶分裂Adams-Moulton公式的基础上,与相同步数的对应分裂后向微分公式相比,新族成员的阶数更高,误差常数更小,同时保持了相似的稳定性。从文献中使用可变步骤实现测试问题得到了这一点的一些证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信