Detection of Neonatal Patient Motion Using a Pressure-Sensitive Mat

Samreen Aziz, Yasmina Souley Dosso, Shermeen Nizami, K. Greenwood, J. Harrold, J. Green
{"title":"Detection of Neonatal Patient Motion Using a Pressure-Sensitive Mat","authors":"Samreen Aziz, Yasmina Souley Dosso, Shermeen Nizami, K. Greenwood, J. Harrold, J. Green","doi":"10.1109/MeMeA49120.2020.9137147","DOIUrl":null,"url":null,"abstract":"Patient movements can cause motion artifacts on physiological signals and can result in false alarms in a continuous patient care environment. This paper explores the use of data from a pressure sensitive mat (PSM), placed below neonates in the neonatal intensive care unit (NICU), to detect patient movement. The centre of pressure (COP) is tracked over time using a sliding window. Windows exhibiting large deviations in the COP are indicative of patient motion. Local averaging and window boundary suppression leads to improved movement detection accuracy. Using data from five patients, optimal parameter values were determined using a grid search method. After averaging the best performing parameters, a window size of six seconds was found to be optimal across patients, resulting in an area under the ROC curve of 0.909. Detection accuracy is maintained when evaluated on a patient not used to optimize algorithm parameters, with an accuracy of 93.4%. It is hoped that the movement detection algorithm developed in this work will be useful for gating motion-artifact related false alarms from neonatal patient monitors.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Patient movements can cause motion artifacts on physiological signals and can result in false alarms in a continuous patient care environment. This paper explores the use of data from a pressure sensitive mat (PSM), placed below neonates in the neonatal intensive care unit (NICU), to detect patient movement. The centre of pressure (COP) is tracked over time using a sliding window. Windows exhibiting large deviations in the COP are indicative of patient motion. Local averaging and window boundary suppression leads to improved movement detection accuracy. Using data from five patients, optimal parameter values were determined using a grid search method. After averaging the best performing parameters, a window size of six seconds was found to be optimal across patients, resulting in an area under the ROC curve of 0.909. Detection accuracy is maintained when evaluated on a patient not used to optimize algorithm parameters, with an accuracy of 93.4%. It is hoped that the movement detection algorithm developed in this work will be useful for gating motion-artifact related false alarms from neonatal patient monitors.
使用压敏垫检测新生儿患者的运动
患者的运动可能导致生理信号上的运动伪影,并可能在连续的患者护理环境中导致假警报。本文探讨了使用压力敏感垫(PSM)的数据,放置在新生儿重症监护病房(NICU)的新生儿下方,以检测患者的运动。压力中心(COP)使用滑动窗口随时间跟踪。在COP中显示较大偏差的窗口表明患者运动。局部平均和窗口边界抑制提高了运动检测精度。利用5例患者的数据,采用网格搜索法确定最优参数值。在对最佳表现参数进行平均后,发现6秒的窗口大小在所有患者中是最佳的,从而使ROC曲线下的面积为0.909。当对未用于优化算法参数的患者进行评估时,检测准确性保持在93.4%。希望在这项工作中开发的运动检测算法将有助于控制新生儿患者监护仪中与运动伪影相关的假警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信