Remarks on a Recurrent Quaternion Neural Network with Application to Servo Control Systems

Kazuhiko Takahashi
{"title":"Remarks on a Recurrent Quaternion Neural Network with Application to Servo Control Systems","authors":"Kazuhiko Takahashi","doi":"10.1109/ANZCC.2018.8606573","DOIUrl":null,"url":null,"abstract":"This paper investigates the control system application of a fully connected recurrent neural network in which all network parameters and signals are expressed in quaternion numbers, and the training of the network is conducted using a real–time recurrent learning algorithm. The recurrent quaternion neural network (RQNN), which synthesises the control input to track the outputs of the non–linear system to the desired outputs, assumes the role of an adaptive–type servo controller in the control system. A feedback error learning method is used to train the RQNN using an online method in the control system. Numerical simulations for controlling discrete–time non–linear plants are performed to evaluate the characteristics of the RQNN–based adaptive–type controller. The simulation results demonstrate the feasibility and effectiveness of the proposed controller.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper investigates the control system application of a fully connected recurrent neural network in which all network parameters and signals are expressed in quaternion numbers, and the training of the network is conducted using a real–time recurrent learning algorithm. The recurrent quaternion neural network (RQNN), which synthesises the control input to track the outputs of the non–linear system to the desired outputs, assumes the role of an adaptive–type servo controller in the control system. A feedback error learning method is used to train the RQNN using an online method in the control system. Numerical simulations for controlling discrete–time non–linear plants are performed to evaluate the characteristics of the RQNN–based adaptive–type controller. The simulation results demonstrate the feasibility and effectiveness of the proposed controller.
递归四元数神经网络在伺服控制系统中的应用
本文研究了全连接递归神经网络在控制系统中的应用,该网络的所有网络参数和信号均以四元数表示,网络的训练采用实时递归学习算法。循环四元数神经网络(RQNN)在控制系统中扮演自适应型伺服控制器的角色,它综合控制输入以跟踪非线性系统的输出到期望输出。在控制系统中,采用反馈误差学习方法在线训练RQNN。通过对离散非线性对象控制的数值仿真,评价了基于rqnn的自适应控制器的特性。仿真结果验证了所提控制器的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信