Recurrent Neural Networks for Inferring Intentions in Shared Tasks for Industrial Collaborative Robots

Marc Maceira, Alberto Olivares Alarcos, G. Alenyà
{"title":"Recurrent Neural Networks for Inferring Intentions in Shared Tasks for Industrial Collaborative Robots","authors":"Marc Maceira, Alberto Olivares Alarcos, G. Alenyà","doi":"10.1109/RO-MAN47096.2020.9223587","DOIUrl":null,"url":null,"abstract":"Industrial robots are evolving to work closely with humans in shared spaces. Hence, robotic tasks are increasingly shared between humans and robots in collaborative settings. To enable a fluent human robot collaboration, robots need to predict and respond in real-time to worker’s intentions. We present a method for early decision using force infor-mation. Forces are provided naturally by the user through the manipulation of a shared object in a collaborative task. The proposed algorithm uses a recurrent neural network to recognize operator’s intentions. The algorithm is evaluated in terms of action recognition on a force dataset. It excels at detecting intentions when partial data is provided, enabling early detection and facilitating a quick robot reaction.","PeriodicalId":383722,"journal":{"name":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN47096.2020.9223587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Industrial robots are evolving to work closely with humans in shared spaces. Hence, robotic tasks are increasingly shared between humans and robots in collaborative settings. To enable a fluent human robot collaboration, robots need to predict and respond in real-time to worker’s intentions. We present a method for early decision using force infor-mation. Forces are provided naturally by the user through the manipulation of a shared object in a collaborative task. The proposed algorithm uses a recurrent neural network to recognize operator’s intentions. The algorithm is evaluated in terms of action recognition on a force dataset. It excels at detecting intentions when partial data is provided, enabling early detection and facilitating a quick robot reaction.
基于递归神经网络的工业协作机器人共享任务意图推理
工业机器人正在进化,以便在共享空间与人类密切合作。因此,在协作环境中,机器人任务越来越多地由人类和机器人共享。为了实现流畅的人机协作,机器人需要实时预测和响应工人的意图。提出了一种利用力信息进行早期决策的方法。力是由用户通过在协作任务中操作共享对象而自然提供的。该算法使用递归神经网络识别操作员的意图。在力数据集上对该算法进行了动作识别。它擅长在提供部分数据时检测意图,从而实现早期检测并促进机器人快速反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信