Improved Spoken Uyghur Segmentation for Neural Machine Translation

Chenggang Mi, Yating Yang, Xi Zhou, Lei Wang, Tonghai Jiang
{"title":"Improved Spoken Uyghur Segmentation for Neural Machine Translation","authors":"Chenggang Mi, Yating Yang, Xi Zhou, Lei Wang, Tonghai Jiang","doi":"10.1109/ICTAI.2018.00018","DOIUrl":null,"url":null,"abstract":"To increase vocabulary overlap in spoken Uyghur neural machine translation (NMT), we propose a novel method to enhance the common used subword units based segmentation method. In particular, we apply a log-linear model as the main framework and integrate several features such as subword, morphological information, bilingual word alignment and monolingual language model into it. Experimental results show that spoken Uyghur segmentation with our proposed method improves the performance of the spoken Uyghur-Chinese NMT significantly (yield up to 1.52 BLEU improvements).","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To increase vocabulary overlap in spoken Uyghur neural machine translation (NMT), we propose a novel method to enhance the common used subword units based segmentation method. In particular, we apply a log-linear model as the main framework and integrate several features such as subword, morphological information, bilingual word alignment and monolingual language model into it. Experimental results show that spoken Uyghur segmentation with our proposed method improves the performance of the spoken Uyghur-Chinese NMT significantly (yield up to 1.52 BLEU improvements).
基于神经机器翻译的维吾尔语语音切分方法
为了增加维吾尔语口语神经机器翻译中的词汇重叠,提出了一种改进常用子词单元分割方法的新方法。特别地,我们以对数线性模型为主要框架,整合了子词、形态信息、双语词对齐和单语语言模型等特征。实验结果表明,本文提出的维吾尔语语音分割方法显著提高了维吾尔语-汉语语音NMT的性能(良率提高了1.52 BLEU)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信