{"title":"G-AUC: An improved metric for classification model selection","authors":"Shashank Sadafule, Sobhan Sarkar, Shaomin Wu","doi":"10.1109/ICSEC56337.2022.10049319","DOIUrl":null,"url":null,"abstract":"The performance of classification models is often measured using the metric, area under the curve (AUC). The non-parametric estimate of this metric only considers the ranks of the test instances and fails to consider the predicted scores of the model. Consequently, not all the valuable information about the model’s output is utilized. To address this issue, the present paper introduces a new metric, called Gamma AUC (G-AUC) that can take into account both ranks as well as scores. The parameter G tackles the problem of overfitting scores into the metric. To validate the proposed metric, we tested it on 20 UCI datasets with 10 state-of-the-art models. Out of all the values of the parameter G that we tested, four of them got p-value less than 0.05 for the alternative hypothesis that, on the training sets, G-AUC has a greater correlation than AUC itself, with AUC on test sets. Furthermore, for all values of G considered, G-AUC always won majority of the times than AUC for selecting better models.","PeriodicalId":430850,"journal":{"name":"2022 26th International Computer Science and Engineering Conference (ICSEC)","volume":"18 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC56337.2022.10049319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of classification models is often measured using the metric, area under the curve (AUC). The non-parametric estimate of this metric only considers the ranks of the test instances and fails to consider the predicted scores of the model. Consequently, not all the valuable information about the model’s output is utilized. To address this issue, the present paper introduces a new metric, called Gamma AUC (G-AUC) that can take into account both ranks as well as scores. The parameter G tackles the problem of overfitting scores into the metric. To validate the proposed metric, we tested it on 20 UCI datasets with 10 state-of-the-art models. Out of all the values of the parameter G that we tested, four of them got p-value less than 0.05 for the alternative hypothesis that, on the training sets, G-AUC has a greater correlation than AUC itself, with AUC on test sets. Furthermore, for all values of G considered, G-AUC always won majority of the times than AUC for selecting better models.