Research on Multi-feature Fusion for Support Vector Machine Image Classification Algorithm

Lixia Deng, Hongquan Li, Haiying Liu, Hui Zhang, Yang Zhao
{"title":"Research on Multi-feature Fusion for Support Vector Machine Image Classification Algorithm","authors":"Lixia Deng, Hongquan Li, Haiying Liu, Hui Zhang, Yang Zhao","doi":"10.1109/ICETCI53161.2021.9563611","DOIUrl":null,"url":null,"abstract":"Considering that the traditional machine learning algorithm mainly relies on manual feature extraction for image classification, the classification results are often not ideal. This paper proposes a front-end optimization method based on multi-feature fusion. Extracting image features uses fusion mode of Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) and forms a new feature set HOG-SIFT. Classification results are obtained by training with Support Vector Machine (SVM). Results show that the fusion of new features has a higher precision and recall than single feature extraction.","PeriodicalId":170858,"journal":{"name":"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETCI53161.2021.9563611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering that the traditional machine learning algorithm mainly relies on manual feature extraction for image classification, the classification results are often not ideal. This paper proposes a front-end optimization method based on multi-feature fusion. Extracting image features uses fusion mode of Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) and forms a new feature set HOG-SIFT. Classification results are obtained by training with Support Vector Machine (SVM). Results show that the fusion of new features has a higher precision and recall than single feature extraction.
多特征融合支持向量机图像分类算法研究
考虑到传统的机器学习算法主要依靠人工特征提取进行图像分类,分类结果往往不理想。提出了一种基于多特征融合的前端优化方法。利用尺度不变特征变换(SIFT)和梯度直方图(HOG)的融合模式提取图像特征,形成新的特征集HOG-SIFT。通过支持向量机(SVM)训练得到分类结果。结果表明,新特征融合比单一特征提取具有更高的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信