EEG-based Positive-Negative Emotion Classification Using Machine Learning Techniques

Yuta Kasuga, Jungpil Shin, Md. Al Mehedi Hasan, Y. Okuyama, Yoichi Tomioka
{"title":"EEG-based Positive-Negative Emotion Classification Using Machine Learning Techniques","authors":"Yuta Kasuga, Jungpil Shin, Md. Al Mehedi Hasan, Y. Okuyama, Yoichi Tomioka","doi":"10.1109/MCSoC51149.2021.00027","DOIUrl":null,"url":null,"abstract":"The aim of this study is to find useful electrodes for positive-negative emotion classification based on EEG. We collected EEG signals from 30 people aged 19-38 using 14 electrodes. We used two movies for positive and negative emotions. First, we extracted the power spectrum from the EEG data, normalized the data, and extracted frequency-domain statistical parameters therefrom. When the features were applied to Random Forests (RF), 85.4%, 83.8%, and 83.4% accuracy was obtained for P8, P7, and FC6 electrodes, respectively. This indicates that the P8, P7 and FC6 electrodes are the useful electrode in positive-negative emotion classification.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this study is to find useful electrodes for positive-negative emotion classification based on EEG. We collected EEG signals from 30 people aged 19-38 using 14 electrodes. We used two movies for positive and negative emotions. First, we extracted the power spectrum from the EEG data, normalized the data, and extracted frequency-domain statistical parameters therefrom. When the features were applied to Random Forests (RF), 85.4%, 83.8%, and 83.4% accuracy was obtained for P8, P7, and FC6 electrodes, respectively. This indicates that the P8, P7 and FC6 electrodes are the useful electrode in positive-negative emotion classification.
利用机器学习技术进行基于脑电图的正负情绪分类
本研究的目的是寻找有效的电极,用于基于脑电图的正负情绪分类。我们用14个电极收集了30个19-38岁的人的脑电图信号。我们用两部电影来表达积极和消极的情绪。首先从脑电数据中提取功率谱,对数据进行归一化处理,提取频域统计参数;当特征应用于随机森林(RF)时,P8、P7和FC6电极的准确率分别为85.4%、83.8%和83.4%。这表明P8、P7和FC6电极是积极-消极情绪分类的有用电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信