ResNet-50 for Classifying Indonesian Batik with Data Augmentation

Benny Sukma Negara, Eki Satria, Suwanto Sanjaya, Dimas Reynaldi Dwi Santoso
{"title":"ResNet-50 for Classifying Indonesian Batik with Data Augmentation","authors":"Benny Sukma Negara, Eki Satria, Suwanto Sanjaya, Dimas Reynaldi Dwi Santoso","doi":"10.1109/ICOTEN52080.2021.9493488","DOIUrl":null,"url":null,"abstract":"Batik is composed of various artistic images and patterns, which are called batik motifs. The diversity of batik motifs is influenced by the culture of a region which has a philosophical meaning. Indonesia as a country of cultural diversity has unique batik motifs in each region. Manual identification of batik motifs requires special knowledge and experiences from experts. Various methods are applied to classify images, among others is the Convolutional Neural Network (CNN) method. This study classifies batik images by applying deep learning using the Convolutional Neural Network (CNN) method with ResNet architecture. The number of original batik image dataset consists of 300 images with 50 classes. Augmentation process produce 1200 new image with the same number of classes. Testing scenario compare the accuracy between original data and augmented data with ratio 80:20 for data training and testing. The confusion matrices shows the model provides the highest accuracy performance at 96%.","PeriodicalId":308802,"journal":{"name":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Congress of Advanced Technology and Engineering (ICOTEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOTEN52080.2021.9493488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Batik is composed of various artistic images and patterns, which are called batik motifs. The diversity of batik motifs is influenced by the culture of a region which has a philosophical meaning. Indonesia as a country of cultural diversity has unique batik motifs in each region. Manual identification of batik motifs requires special knowledge and experiences from experts. Various methods are applied to classify images, among others is the Convolutional Neural Network (CNN) method. This study classifies batik images by applying deep learning using the Convolutional Neural Network (CNN) method with ResNet architecture. The number of original batik image dataset consists of 300 images with 50 classes. Augmentation process produce 1200 new image with the same number of classes. Testing scenario compare the accuracy between original data and augmented data with ratio 80:20 for data training and testing. The confusion matrices shows the model provides the highest accuracy performance at 96%.
基于数据增强的印尼蜡染分类ResNet-50
蜡染是由各种艺术形象和图案组成的,这些图案被称为蜡染图案。蜡染图案的多样性受到一个地区文化的影响,具有哲学意义。印度尼西亚作为一个文化多样性的国家,在每个地区都有独特的蜡染图案。手工鉴定蜡染图案需要专家的专业知识和经验。用于图像分类的方法有很多种,其中卷积神经网络(CNN)方法就是其中之一。本研究采用基于ResNet架构的卷积神经网络(CNN)方法进行深度学习,对蜡染图像进行分类。原始蜡染图像数据集由300幅图像组成,分为50个类。增强过程产生1200个具有相同类数的新图像。测试场景以80:20的比例比较原始数据和增强数据的准确率,进行数据训练和测试。混淆矩阵显示,该模型提供了96%的最高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信