Demand response model for characteristics analysis of electricity consumers

Weiji Han, Li Zhang, Jidong Liu
{"title":"Demand response model for characteristics analysis of electricity consumers","authors":"Weiji Han, Li Zhang, Jidong Liu","doi":"10.1109/ISGT-ASIA.2012.6303328","DOIUrl":null,"url":null,"abstract":"An exact grasp of the electricity consumers' demand response characteristics (DRCs) plays an important role in designing and achieving the potential benefit of demand response (DR) programs. In order to analyze the DRCs of industrial electricity consumers in the time of use (TOU) pricing program, a DR model based on the Support Vector Machine (SVM) regression algorism is proposed in the paper. With the model, electricity consumers' daily load arrangement under different price rate (PR) of TOU pricing program could be simulated. Using the simulating data, the electricity consumers' DRCs could be calculated to make further analysis. The work provides reasonably theoretical reference for designing, evaluating and amending current TOU pricing programs and gives an access to quantitively evaluate electricity consumers' DR potential. Besides, the model can also be adapted to study other areas of DR.","PeriodicalId":330758,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-ASIA.2012.6303328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

An exact grasp of the electricity consumers' demand response characteristics (DRCs) plays an important role in designing and achieving the potential benefit of demand response (DR) programs. In order to analyze the DRCs of industrial electricity consumers in the time of use (TOU) pricing program, a DR model based on the Support Vector Machine (SVM) regression algorism is proposed in the paper. With the model, electricity consumers' daily load arrangement under different price rate (PR) of TOU pricing program could be simulated. Using the simulating data, the electricity consumers' DRCs could be calculated to make further analysis. The work provides reasonably theoretical reference for designing, evaluating and amending current TOU pricing programs and gives an access to quantitively evaluate electricity consumers' DR potential. Besides, the model can also be adapted to study other areas of DR.
电力消费者特征分析的需求响应模型
准确把握电力用户的需求响应特征对于设计和实现需求响应方案的潜在效益具有重要意义。为了分析工业用电用户在分时电价(TOU)定价方案中的电价损失,提出了一种基于支持向量机(SVM)回归算法的电价损失模型。利用该模型可以模拟不同分时电价方案下用电用户的日负荷安排。利用模拟数据,可以计算出电力用户的drc,从而进行进一步的分析。该研究为设计、评估和修改现行分时电价方案提供了合理的理论参考,并为定量评估电力用户的DR潜力提供了途径。此外,该模型还可适用于DR的其他领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信