Generalized Cyclic Pursuit: An Estimator-Based Model-Reference Adaptive Control Approach

Antoine Ansart, J. Juang
{"title":"Generalized Cyclic Pursuit: An Estimator-Based Model-Reference Adaptive Control Approach","authors":"Antoine Ansart, J. Juang","doi":"10.1109/MED48518.2020.9183218","DOIUrl":null,"url":null,"abstract":"The paper proposes an estimation and control method about sustaining the motion of a group of autonomous agents under the Generalized Cyclic Pursuit (GCP) laws, where formation patterns can be formed by assigning eigenvalues of the system to be marginally stable. In the present paper, a Linear Quadratic Estimator (LQE), used to estimate the absolute position based on information exchange, is coupled with a Model Reference Adaptive Control (MRAC) to sustain the motion of agents and thus maintain the desired patterns in the presence of uncertainties and noise. Simulation results are provided to verify the proposed approach in area coverage applications.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper proposes an estimation and control method about sustaining the motion of a group of autonomous agents under the Generalized Cyclic Pursuit (GCP) laws, where formation patterns can be formed by assigning eigenvalues of the system to be marginally stable. In the present paper, a Linear Quadratic Estimator (LQE), used to estimate the absolute position based on information exchange, is coupled with a Model Reference Adaptive Control (MRAC) to sustain the motion of agents and thus maintain the desired patterns in the presence of uncertainties and noise. Simulation results are provided to verify the proposed approach in area coverage applications.
广义循环追踪:一种基于估计量的模型参考自适应控制方法
本文提出了一种基于广义循环寻迹(GCP)定律的自治智能体群持续运动的估计和控制方法,其中通过赋予系统的特征值为边际稳定来形成编队模式。在本文中,线性二次估计器(LQE)用于估计基于信息交换的绝对位置,与模型参考自适应控制(MRAC)相结合,以维持智能体的运动,从而在存在不确定性和噪声的情况下保持所需的模式。仿真结果验证了该方法在区域覆盖中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信