Dynamic scheduling of computer tasks using genetic algorithms

C. Pico, R. L. Wainwright
{"title":"Dynamic scheduling of computer tasks using genetic algorithms","authors":"C. Pico, R. L. Wainwright","doi":"10.1109/ICEC.1994.349947","DOIUrl":null,"url":null,"abstract":"We concentrate on non-preemptive hard real-time scheduling algorithms. We compare FIFO, EDLF, SRTF and genetic algorithms for solving this problem. The objective of the scheduling algorithm is to dynamically schedule as many tasks as possible such that each task meets its execution deadline, while minimizing the total delay time of all of the tasks. We present a MicroGA that uses a small population size of 10 chromosomes, running for 10 trials using a rather high mutation rate with a sliding window of 10 tasks. The steady-state GA was determined to be better than the generational GA for our MicroGA. We also present a parallel MicroGA model designed for parallel processors. The parallel MicroGA works best when migration is used to move tasks from one processor to another to even out the load as much a possible. Test cases show that the sequential MicroGA model and the parallel MicroGA model produced superior task schedules compared to other algorithms tested.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We concentrate on non-preemptive hard real-time scheduling algorithms. We compare FIFO, EDLF, SRTF and genetic algorithms for solving this problem. The objective of the scheduling algorithm is to dynamically schedule as many tasks as possible such that each task meets its execution deadline, while minimizing the total delay time of all of the tasks. We present a MicroGA that uses a small population size of 10 chromosomes, running for 10 trials using a rather high mutation rate with a sliding window of 10 tasks. The steady-state GA was determined to be better than the generational GA for our MicroGA. We also present a parallel MicroGA model designed for parallel processors. The parallel MicroGA works best when migration is used to move tasks from one processor to another to even out the load as much a possible. Test cases show that the sequential MicroGA model and the parallel MicroGA model produced superior task schedules compared to other algorithms tested.<>
基于遗传算法的计算机任务动态调度
我们主要研究非抢占式硬实时调度算法。我们比较了FIFO、EDLF、SRTF和遗传算法来解决这个问题。调度算法的目标是动态调度尽可能多的任务,使每个任务满足其执行期限,同时使所有任务的总延迟时间最小。我们提出了一种MicroGA,它使用10条染色体的小种群大小,运行10次试验,使用相当高的突变率和10个任务的滑动窗口。对于我们的MicroGA,稳态遗传算法被确定为优于代遗传算法。我们还提出了一个为并行处理器设计的并行MicroGA模型。当使用迁移将任务从一个处理器移动到另一个处理器以尽可能均衡负载时,并行MicroGA工作得最好。测试用例表明,与测试的其他算法相比,顺序MicroGA模型和并行MicroGA模型产生了更好的任务调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信