Implicit-explicit finite-difference lattice Boltzmann model with varying adiabatic index

Stefan T. Kis, Victor E. Ambruş
{"title":"Implicit-explicit finite-difference lattice Boltzmann model with varying adiabatic index","authors":"Stefan T. Kis, Victor E. Ambruş","doi":"10.1063/5.0001069","DOIUrl":null,"url":null,"abstract":"The perfect fluid limit can be obtained from the Boltzmann equation in the limit of vanishing Knudsen number. By treating the collision term in an implicit manner, the implicit-explicit (IMEX) time stepping scheme allows this limit to be achieved at finite values of the time step. We consider the 9th order monotonicity-preserving (MP-9) scheme to implement the advection, which is treated explicitly in the IMEX approach. We reduce the computational costs using reduced distribution functions, which also permits the adiabatic index to be varied. We validate the capabilities of our model by considering the propagation of shock waves in one-dimensional and two-dimensional setups.","PeriodicalId":438372,"journal":{"name":"TIM 19 PHYSICS CONFERENCE","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TIM 19 PHYSICS CONFERENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0001069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The perfect fluid limit can be obtained from the Boltzmann equation in the limit of vanishing Knudsen number. By treating the collision term in an implicit manner, the implicit-explicit (IMEX) time stepping scheme allows this limit to be achieved at finite values of the time step. We consider the 9th order monotonicity-preserving (MP-9) scheme to implement the advection, which is treated explicitly in the IMEX approach. We reduce the computational costs using reduced distribution functions, which also permits the adiabatic index to be varied. We validate the capabilities of our model by considering the propagation of shock waves in one-dimensional and two-dimensional setups.
变绝热指数的隐显有限差分晶格玻尔兹曼模型
在克努森数消失的极限下,由玻尔兹曼方程可以得到完美的流体极限。通过以隐式方式处理碰撞项,隐式-显式(IMEX)时间步进方案允许在时间步长的有限值上实现该极限。我们考虑了9阶保持单调性(MP-9)方案来实现平流,这在IMEX方法中得到了明确的处理。我们使用简化的分布函数来减少计算成本,这也允许绝热指数的变化。我们通过考虑冲击波在一维和二维环境中的传播来验证模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信