A. Hussein, Antony Lloyd Hosking, Mathias Payer, Christopher A. Vick
{"title":"Don't race the memory bus: taming the GC leadfoot","authors":"A. Hussein, Antony Lloyd Hosking, Mathias Payer, Christopher A. Vick","doi":"10.1145/2754169.2754182","DOIUrl":null,"url":null,"abstract":"Dynamic voltage and frequency scaling (DVFS) is ubiquitous on mobile devices as a mechanism for saving energy. Reducing the clock frequency of a processor allows a corresponding reduction in power consumption, as does turning off idle cores. Garbage collection is a canonical example of the sort of memory-bound workload that best responds to such scaling. Here, we explore the impact of frequency scaling for garbage collection in a real mobile device running Android's Dalvik virtual machine, which uses a concurrent collector. By controlling the frequency of the core on which the concurrent collector thread runs we can reduce power significantly. Running established multi-threaded benchmarks shows that total processor energy can be reduced up to 30%, with end-to-end performance loss of at most 10%.","PeriodicalId":136399,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2754169.2754182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Dynamic voltage and frequency scaling (DVFS) is ubiquitous on mobile devices as a mechanism for saving energy. Reducing the clock frequency of a processor allows a corresponding reduction in power consumption, as does turning off idle cores. Garbage collection is a canonical example of the sort of memory-bound workload that best responds to such scaling. Here, we explore the impact of frequency scaling for garbage collection in a real mobile device running Android's Dalvik virtual machine, which uses a concurrent collector. By controlling the frequency of the core on which the concurrent collector thread runs we can reduce power significantly. Running established multi-threaded benchmarks shows that total processor energy can be reduced up to 30%, with end-to-end performance loss of at most 10%.