Vector Spaces

{"title":"Vector Spaces","authors":"","doi":"10.1002/9781119111771.app3","DOIUrl":null,"url":null,"abstract":"We now begin our treatment of the principal subject matter of this text. We shall see that all of linear algebra is essentially a study of various transformation properties defined on a vector space, and hence it is only natural that we carefully define vector spaces. This chapter therefore presents a fairly rigorous development of (finite-dimensional) vector spaces, and a discussion of their most important fundamental properties. Basically, the general definition of a vector space is simply an axiomatization of the elementary properties of ordinary three-dimensional Euclidean space. A nonempty set V is said to be a vector space over a field F if: (i) there exists an operation called addition that associates to each pair x, y ∞ V a new vector x + y ∞ V called the sum of x and y; (ii) there exists an operation called scalar multiplication that associates to each a ∞ F and x ∞ V a new vector ax ∞ V called the product of a and x; (iii) these operations satisfy the following axioms: (V1) x + y = y + x for all x, y ∞ V. (V2) (x + y) + z = x + (y + z) for all x, y, z ∞ V. (V3) There exists an element 0 ∞ V such that 0 + x = x for all x ∞ V.","PeriodicalId":220953,"journal":{"name":"Semi‐Riemannian Geometry","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semi‐Riemannian Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119111771.app3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We now begin our treatment of the principal subject matter of this text. We shall see that all of linear algebra is essentially a study of various transformation properties defined on a vector space, and hence it is only natural that we carefully define vector spaces. This chapter therefore presents a fairly rigorous development of (finite-dimensional) vector spaces, and a discussion of their most important fundamental properties. Basically, the general definition of a vector space is simply an axiomatization of the elementary properties of ordinary three-dimensional Euclidean space. A nonempty set V is said to be a vector space over a field F if: (i) there exists an operation called addition that associates to each pair x, y ∞ V a new vector x + y ∞ V called the sum of x and y; (ii) there exists an operation called scalar multiplication that associates to each a ∞ F and x ∞ V a new vector ax ∞ V called the product of a and x; (iii) these operations satisfy the following axioms: (V1) x + y = y + x for all x, y ∞ V. (V2) (x + y) + z = x + (y + z) for all x, y, z ∞ V. (V3) There exists an element 0 ∞ V such that 0 + x = x for all x ∞ V.
向量空间
我们现在开始处理这篇文章的主要主题。我们将看到所有的线性代数本质上都是对定义在向量空间上的各种变换性质的研究,因此我们仔细定义向量空间是很自然的。因此,本章提出了(有限维)向量空间的一个相当严格的发展,并讨论了它们最重要的基本性质。基本上,向量空间的一般定义是普通三维欧几里得空间的基本性质的公理化。非空集合V被称为域F上的向量空间,如果:(i)存在一个叫做加法的操作,它将x, y∞V与每一对x, y∞V关联一个新的向量x + y∞V,称为x和y的和;(ii)存在一种称为标量乘法的运算,它将a∞F和x∞V对应一个新的向量ax∞V,称为a与x的乘积;(iii)这些运算满足下列公理:(V1) x + y = y + x对所有x, y∞V, (V2) (x + y) + z = x + (y + z)对所有x, y, z∞V, (V3)存在一个元素0∞V,使得0 + x = x对所有x∞V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信