License plate recognition using DTCNNs

M. ter Brugge, J. H. Stevens, J. Nijhuis, L. Spaanenburg
{"title":"License plate recognition using DTCNNs","authors":"M. ter Brugge, J. H. Stevens, J. Nijhuis, L. Spaanenburg","doi":"10.1109/CNNA.1998.685366","DOIUrl":null,"url":null,"abstract":"Automatic license plate recognition requires a series of complex image processing steps. For practical use, the amount of data to be processed must be minimized at early stage. This paper shows that the computationally most intensive steps can be realized by discrete time cellular neural networks (DTCNNs). Moreover, high-level operations like 'finding the license plate in the image' and 'finding the characters on the plate' need only a small number of DTCNNs. Real-life tests show that the DTCNNs are capable of correctly identifying more than 85% out of all license plates while leaving only 0.5% of the original information to be inspected for actual recognition.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

Automatic license plate recognition requires a series of complex image processing steps. For practical use, the amount of data to be processed must be minimized at early stage. This paper shows that the computationally most intensive steps can be realized by discrete time cellular neural networks (DTCNNs). Moreover, high-level operations like 'finding the license plate in the image' and 'finding the characters on the plate' need only a small number of DTCNNs. Real-life tests show that the DTCNNs are capable of correctly identifying more than 85% out of all license plates while leaving only 0.5% of the original information to be inspected for actual recognition.
基于DTCNNs的车牌识别
车牌自动识别需要一系列复杂的图像处理步骤。在实际应用中,需要处理的数据量必须在早期阶段最小化。本文表明离散时间细胞神经网络(DTCNNs)可以实现计算量最大的步骤。此外,像“在图像中找到车牌”和“在车牌上找到字符”这样的高级操作只需要少量的dtcnn。实际测试表明,DTCNNs能够正确识别85%以上的车牌,而只留下0.5%的原始信息进行实际识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信