An effective relevance feedback algorithm for image retrieval

Heng Chen, Zhicheng Zhao, A. Cai, Xiaohui Xie
{"title":"An effective relevance feedback algorithm for image retrieval","authors":"Heng Chen, Zhicheng Zhao, A. Cai, Xiaohui Xie","doi":"10.1109/ICNIDC.2010.5657782","DOIUrl":null,"url":null,"abstract":"Relevance feedback (RF) is an effective method for content-based image retrieval (CBIR), and it is also a feasible step to shorten the semantic gap between low-level visual feature and high-level perception. In this paper, a SVM-based RF algorithm is proposed to improve performance of image retrieval. In classifier training, a sample expanding scheme is adopted to balance the proportion of positive samples and negative samples. And then, a fusion scheme for multiple classifiers based on adaptive weighting is proposed to vote the final query results. The experimental results on Corel image dataset show the effectiveness of the proposed algorithm.","PeriodicalId":348778,"journal":{"name":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2010.5657782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Relevance feedback (RF) is an effective method for content-based image retrieval (CBIR), and it is also a feasible step to shorten the semantic gap between low-level visual feature and high-level perception. In this paper, a SVM-based RF algorithm is proposed to improve performance of image retrieval. In classifier training, a sample expanding scheme is adopted to balance the proportion of positive samples and negative samples. And then, a fusion scheme for multiple classifiers based on adaptive weighting is proposed to vote the final query results. The experimental results on Corel image dataset show the effectiveness of the proposed algorithm.
一种有效的图像检索相关反馈算法
相关性反馈(RF)是基于内容的图像检索(CBIR)的一种有效方法,也是缩短低级视觉特征与高级感知之间语义差距的可行步骤。为了提高图像检索的性能,提出了一种基于支持向量机的射频算法。在分类器训练中,采用样本扩展方案来平衡正样本和负样本的比例。然后,提出了一种基于自适应加权的多分类器融合方案,对最终查询结果进行投票。在Corel图像数据集上的实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信