Estimation of multi-component mixture proportions using regression machine analysis of ultra-wideband spectroscopic measurements

Stuart Gibbs, M. Gardner, Brandon Herrera, Christopher D. Faulkner, Adam M. Parks, J. Daniliuc, Paul Hodge, B. R. Jean, R. Marks
{"title":"Estimation of multi-component mixture proportions using regression machine analysis of ultra-wideband spectroscopic measurements","authors":"Stuart Gibbs, M. Gardner, Brandon Herrera, Christopher D. Faulkner, Adam M. Parks, J. Daniliuc, Paul Hodge, B. R. Jean, R. Marks","doi":"10.1109/ICUWB.2013.6663824","DOIUrl":null,"url":null,"abstract":"Ultra-wideband signals are used to examine multiple-constituent fluid mixtures in a semi-open system. A feedforward neural network operates on an array of easily computed signal properties, plus the weight and temperature of the fluid samples, to provide an estimate of the constituent proportions. The average performance of the neural network is tested by artificially increasing the test data sample size and repeatedly training neural networks of the same topology. Networks of differing topologies are compared. Statistical analysis is performed on these results and the 95% confidence interval of the data prediction is shown. The 95% accuracy averages around ± 6.9 percentage points for both oil and water.","PeriodicalId":159159,"journal":{"name":"2013 IEEE International Conference on Ultra-Wideband (ICUWB)","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Ultra-Wideband (ICUWB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2013.6663824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ultra-wideband signals are used to examine multiple-constituent fluid mixtures in a semi-open system. A feedforward neural network operates on an array of easily computed signal properties, plus the weight and temperature of the fluid samples, to provide an estimate of the constituent proportions. The average performance of the neural network is tested by artificially increasing the test data sample size and repeatedly training neural networks of the same topology. Networks of differing topologies are compared. Statistical analysis is performed on these results and the 95% confidence interval of the data prediction is shown. The 95% accuracy averages around ± 6.9 percentage points for both oil and water.
超宽带光谱测量中多组分混合比例的回归分析
超宽带信号用于检测半开放系统中的多组分流体混合物。前馈神经网络对一系列易于计算的信号特性进行操作,再加上流体样品的重量和温度,以提供组成比例的估计。通过人为增加测试数据样本量和重复训练具有相同拓扑结构的神经网络来测试神经网络的平均性能。比较了不同拓扑结构的网络。对这些结果进行统计分析,给出了数据预测的95%置信区间。对于油和水,95%的准确率平均约为±6.9个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信