Short Text Classification Based on Cross-Connected GRU Kernel Mapping Support Vector Machine

Qi Wang, Zhaoying Liu, Ting Zhang, Yujian Li
{"title":"Short Text Classification Based on Cross-Connected GRU Kernel Mapping Support Vector Machine","authors":"Qi Wang, Zhaoying Liu, Ting Zhang, Yujian Li","doi":"10.1109/ASSP54407.2021.00038","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) has achieved excellent results in short text classification. However, its performance is limited in the kernel function. This paper presents a short text classification method based on Cross-connected GRU Kernel Mapping Support Vector Machine (C-GRUKMSVM), to further improve the accuracy of short text classification. The method consists of a feature mapping module and a classification module. The feature mapping module first represents the text as a word vector using the glove method, and then explicitly maps the low-dimensional word vector to a high-dimensional space using a three-layer cross-connected GRU; the classification module uses a soft-margin support vector machine for classification. Experimental results on five publicly available short text datasets show that C-GRUKMSVM achieves better text classification performance than convolutional networks, support vector machines and Naïve Bayes. Additionally, different cross-connected methods, recurrent units and recurrent structures have an impact on the performance of C-GRUKMSVM.","PeriodicalId":153782,"journal":{"name":"2021 2nd Asia Symposium on Signal Processing (ASSP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Asia Symposium on Signal Processing (ASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSP54407.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support vector machine (SVM) has achieved excellent results in short text classification. However, its performance is limited in the kernel function. This paper presents a short text classification method based on Cross-connected GRU Kernel Mapping Support Vector Machine (C-GRUKMSVM), to further improve the accuracy of short text classification. The method consists of a feature mapping module and a classification module. The feature mapping module first represents the text as a word vector using the glove method, and then explicitly maps the low-dimensional word vector to a high-dimensional space using a three-layer cross-connected GRU; the classification module uses a soft-margin support vector machine for classification. Experimental results on five publicly available short text datasets show that C-GRUKMSVM achieves better text classification performance than convolutional networks, support vector machines and Naïve Bayes. Additionally, different cross-connected methods, recurrent units and recurrent structures have an impact on the performance of C-GRUKMSVM.
基于交叉连接GRU核映射支持向量机的短文本分类
支持向量机(SVM)在短文本分类中取得了优异的成绩。然而,它的性能在核函数中受到限制。为了进一步提高短文本分类的准确率,本文提出了一种基于交叉连接GRU核映射支持向量机(C-GRUKMSVM)的短文本分类方法。该方法由特征映射模块和分类模块组成。特征映射模块首先使用手套法将文本表示为词向量,然后使用三层交联GRU将低维词向量显式映射到高维空间;分类模块采用软边距支持向量机进行分类。在5个公开的短文本数据集上的实验结果表明,C-GRUKMSVM比卷积网络、支持向量机和Naïve贝叶斯具有更好的文本分类性能。此外,不同的交联方式、循环单元和循环结构对C-GRUKMSVM的性能也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信